Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture.
Androgenic glands (AGs) of the freshwater prawn Macrobrachium rosenbergii were subjected to endocrine manipulation, causing them to hypertrophy. Transcripts from these glands were used in the construction of an AG cDNA subtractive library. Screening of the library revealed an AG-specific gene, termed the M. rosenbergii insulin-like AG (Mr-IAG) gene. The cDNA of this gene was then cloned and fully sequenced. The cysteine backbone of the predicted mature Mr-IAG peptide (B and A chains) showed high similarity to that of other crustacean AG-specific insulin-like peptides. In vivo silencing of the gene, by injecting the prawns with Mr-IAG double-stranded RNA, temporarily prevented the regeneration of male secondary sexual characteristics, accompanied by a lag in molt and a reduction in growth parameters, which are typically higher in males of the species. In terms of reproductive parameters, silencing of Mr-IAG led to the arrest of testicular spermatogenesis and of spermatophore development in the terminal ampullae of the sperm duct, accompanied by hypertrophy and hyperplasia of the AGs. This study constitutes the first report of the silencing of a gene expressed specifically in the AG, which caused a transient adverse effect on male phenotypical gender differences and spermatogenesis.
In Crustacea, an early evolutionary group (∼50 000 species) inhabiting most ecological niches, sex differentiation is regulated by a male-specific androgenic gland (AG). The identification of AG-specific insulin-like factors (IAGs) and genomic sex markers offers an opportunity for a deeper understanding of the sexual differentiation mechanism in crustaceans and other arthropods. Here, we report, to our knowledge, the first full and functional sex reversal of male freshwater prawns (Macrobrachium rosenbergii) through the silencing of a single IAG-encoding gene. These "neofemales" produced all-male progeny, as proven by sex-specific genomic markers. This finding offers an insight regarding the biology and evolution of sex differentiation regulation, with a novel perspective for the evolution of insulin-like peptides. Our results demonstrate how temporal intervention with a key regulating gene induces a determinative, extreme phenotypic shift. Our results also carry tremendous ecological and commercial implications. Invasive and pest crustacean species represent genuine concerns worldwide without an apparent solution. Such efforts might, therefore, benefit from sexual manipulations, as has been successfully realized with other arthropods. Commercially, such manipulation would be significant in sexually dimorphic cultured species, allowing the use of nonbreeding, monosex populations while dramatically increasing yield and possibly minimizing the invasion of exotic cultured species into the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.