A systematic examination of the dynamical relationship between the North Atlantic Oscillation (NAO) and atmospheric blocking episodes in the North Atlantic during winter is undertaken. Employing the blocking criteria, as defined by Tibaldi and Molteni (1990), we first establish a statistical relationship, through compositing and linear regression analysis, between the two phenomena. The results show that the frequency of blocking formations in the North Atlantic region is sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative than the positive phase of the NAO. The lifetime of blocking episodes is also sensitive to the phase of the NAO. When the NAO is in the negative phase, the distribution of the length of blocking varies considerably. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO accounts for about 30% of the variation in the wintertime North Atlantic blocking episodes. We propose a conceptual model that strengthens the statistical association and offers an explanation for a dynamical connection between the occurrences of blocking and the NAO in the North Atlantic. Application of a low-order theoretical model by Charney and DeVore (1979) and an analysis of Northern Hemisphere observed surface temperature suggest that the NAO-related difference in blocking frequency and persistence are associated with changes in the zonally asymmetric thermal forcing which, to a large extent, is determined by the phase of the NAO. For the negative phase of the NAO, the distribution of the surface air temperature anomaly is the distinctive 'warm ocean/cold land' pattern related to the resonance forcing of topography and creates a dynamical environment favourable for the formation and persistence of blocks. For the positive phase of the NAO, on the other hand, the distribution of the surface air temperature anomalies is the distinctive 'cold ocean/warm land' pattern, which reduces or destroys the resonance forcing of topography and is unfavourable for the development and persistence of blocks.
The impacts of El Niñ o-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO) on winter (January-February-March) temperature variability over Canada are analysed for the period 1900-1995. Through linear regression, regional characteristics in the interannual temperature variability explained by these oscillations are firstly identified. Modulation of El Niñ o and La Niñ a winter temperature responses by various combinations of the PDO and NAO is then investigated via composite analysis. Results show the NAO as the dominant low frequency variability mode affecting winter temperature, however, the effects are mainly confined to north-eastern regions of the country. The ENSO and PDO influences are somewhat weaker and occur over western and central Canada. It is determined that the associated winter PDO pattern has a significant modulating effect on ENSO related temperature responses. Impacts are stronger and more spatially coherent during El Niñ o episodes when positive PDO winters are associated with strong positive temperature anomalies over most of Canada, neutral PDO with weaker anomalies (positive in the west and negative in the east), and negative PDO with strong negative anomalies over western Canada. Analysis also suggests that La Niñ a and negative PDO combinations are associated with negative temperature anomalies, especially in the far west. Over eastern regions of Canada, El Niñ o (La Niñ a) events modulate the typical positive (negative) NAO temperature responses by generally making them warmer (colder). All observed relationships are explained by variations in associated mid-tropospheric circulation over the north Pacific (i.e. Aleutian low region), and western and central North America. Results from this investigation aid in the understanding of relationships between low frequency oscillations and winter temperature variability over Canada. They also suggest the possibility of improved winter temperature forecasts based on conditions in the tropical and north Pacific, and the north Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.