The streets, blocks, lots, and buildings are the main elements of cities' texture. Surrounded by streets and surrounding the buildings, urban blocks invariably interact with these components dialectically, in that it can connect the network of streets and buildings, hence its significance in urban design. However, affected by unsound formal and spatial changes of urban forms in modern and postmodern eras, space coherence reduction led to a loss of blocks' identity. Therefore, we can barely find a comprehensive functional tool structured on a solid understanding to design this very component of the urban morphology. In this regard, this study seeks to define a practical tool for analyzing and designing this crucial element developing an operational, yet expandable, checklist for urban blocks including various factors, from concepts to indices. All these factors are classified under three main concepts: spatial balance, spatial continuity and integration, and durability. In fact, as a primitive step, this research can enable urban designers to understand urban blocks more effectively and use the framework to assess the current situation and design the future.
Increasing population causes Energy consumption and environmental pollution. It is essential to consider renewable forms of energy, especially solar power, to reduce energy consumption. This requires attention to energy issues in the early stages of urban design and practical and creative solutions for more efficient use of this type of energy. This study aims at calculating the annual solar radiation at a city scale through a novel process and methodology. In this regard, artificial intelligence algorithms and satellite data can help maximize the amount of sunlight in neighborhoods and urban blocks in neighborhood units during the development process. In the simulation process, location, and optimization of the urban form, it is necessary to consider the limitations and resources for field study and simulation of urban blocks. Therefore, in this study, Farhangian neighborhood in phase 1 of Kermanshah, Iran, which has a good level of structural diversity and lends itself to field studies, was selected and studied at neighborhood and urban block scales. The case study indicates the significant role of calculating and optimizing the patterns of urban blocks to achieve maximum solar energy. Estimates at different levels show that urban block variables effectively access solar radiation energy and, given various scales of development - from macro-scale spatial planning to micro-scale local design - can improve energy intake by 3 to 5 percent. Accordingly, the results show that to accelerate the calculation of energy at the planning scale, the use of 2.5D locating model and 3D optimization contribute to achieving the maximum or minimum solar radiation, respectively. On the other hand, this method can be used to organize calculations and planning for maximum absorption of solar radiation at different stages of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.