It is well known that path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian as well as active noise. Through this mapping we can see interesting crossovers in mechanical properties of the polymer with changing contour length. The polymer end-to-end distribution exhibits Gaussian behaviour for short lengths, which changes to the form of semiflexible filaments at intermediate lengths, to finally go back to a Gaussian form for long contour lengths. By performing a Laplace transform of the governing Fokker-Planck equation of the active Brownian particle, we discuss a direct method to derive exact expressions for all the moments of the relevant dynamical variables, in arbitrary dimensions. These are verified via numerical simulations and used to describe interesting qualitative features such as, for example, dynamical crossovers. Finally we discuss the kurtosis of the ABP's position which we compute exactly and show that it can be used to differentiate between active Brownian particles and active Ornstein-Uhlenbeck process.
An extensible semiflexible filament moving on a motility assay of motor proteins undergoes first order re-entrant phase transition from open chain to spiral as a function of the extension rate and turnover of motor proteins.
We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein–Uhlenbeck process for active speed generation. Using a Laplace transform approach, we describe and use a Fokker–Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of several such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze the dynamical crossovers, determined by the orientational persistence of activity, speed fluctuation and relaxation. The kurtosis of displacement shows positive and negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed and orientational fluctuations, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.