Laser-induced forward transfer (LIFT) has been shown to be a useful technique for the manufacturing of micron-scale metal structures. LIFT is a high-resolution, non-contact digital printing method that can support the fabrication of complex shapes and multi-material structures in a single step under ambient conditions. However, LIFT printed metal structures often suffer from inferior mechanical, electrical, and thermal properties when compared to their bulk metal counterparts, and often are prone to enhanced chemical corrosion. This is due mostly to their non-compact structures, which have voids and inter-droplet delamination. In this paper, a theoretical framework together with experimental results of achievable compactness limits is presented for a variety of metals. It is demonstrated that compactness limits depend on material properties and jetting conditions. It is also shown how a specific choice of materials can yield compact structures, for example, when special alloys are chosen along with a suitable donor construct. The example of printed amorphous ZrPd is detailed. This study contributes to a better understanding of the limits of implementing LIFT for the fabrication of metal structures, and how to possibly overcome some of these limitations.
Threading dislocation density (TDD) of epitaxial Ge layer on Si was explored by defect etching. Ge samples were etched by chromium free Dash etching solution, and the influence of post process annealing was studied. The first part of this work deals with the comparison of two characterization methods for TDD: AFM of etch pits and TEM. The etch rate and morphology of Dash solution on pure Ge is introduced. The morphology and density of the etched pits is introduced for various annealing conditions after the growth.
Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model the process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.