To overcome data rate limitations of RF communication links with satellites, TNO and DLR envision optical free-space communication feeder links for next generation high throughput satellites. This paper provides a feasibility assessment of such links and the technology needed. The main results of the link budget and the turbulence modeling of terabit/s optical links are presented. Based on these parameters, requirements and status of the link-subsystems are discussed, and a roadmap is presented, aimed at achieving terabit per second optical feeder links.
The ESA Gaia spacecraft has two Shack-Hartmann wavefront sensors (WFS) on its focal plane. They are required to refocus the telescope in-orbit due to launch settings and gravity release. They require bright stars to provide good signal to noise patterns. The centroiding precision achievable poses a limit on the minimum stellar brightness required and, ultimately, on the observing time required to reconstruct the wavefront. Maximum likelihood algorithms have been developed at the Gaia SOC. They provide optimum performance according to the Cramér-Rao lower bound. Detailed wavefront reconstruction procedures, dealing with partial telescope pupil sampling and partial microlens illumination have also been developed. In this work, a brief overview of the WFS and an in depth description of the centroiding and wavefront reconstruction algorithms is provided.
An international round-robin experiment has been conducted to test procedures and methods for the measurement of angle resolved light scattering. ASTM E2387-05 has been used as the main guide, while the experience gained should also contribute to the new ISO standard of angle resolved scattering currently under development (ISO/WD 19986:2016). Seven laboratories from Europe and the USA measured the angle resolved scattering from Al/SiO 2 coated substrates, transparent substrates, volume diffusors, quasi volume diffusors, white calibration standards, and grating samples at laser wavelengths in the UV, VIS and NIR spectrum. Results were sent to Fraunhofer IOF that coordinated the experiments and analyzed the data, while ESA-ESTEC, as the project donor, defined conditions and parameters. Depending mainly on the sample type, overall good to reasonable agreements were observed, with largest deviations at scattering angles very close to the specular beam. Volume diffusor characterization unexpectedly turned out to be challenging. Not all participants provided measurement uncertainty ranges according to GUM, often, a single general scatterometer-related measurement uncertainty value was stated. Although relative instrument measurement uncertainties close to 1% are sometimes claimed, the comparison results did not support these claims for specular scattering samples as mirrors, substrates, or gratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.