<abstract> <p>Though several AI-based models have been established for COVID-19 diagnosis, the machine-based diagnostic gap is still ongoing, making further efforts to combat this epidemic imperative. So, we tried to create a new feature selection (FS) method because of the persistent need for a reliable system to choose features and to develop a model to predict the COVID-19 virus from clinical texts. This study employs a newly developed methodology inspired by the flamingo's behavior to find a near-ideal feature subset for accurate diagnosis of COVID-19 patients. The best features are selected using a two-stage. In the first stage, we implemented a term weighting technique, which that is RTF-C-IEF, to quantify the significance of the features extracted. The second stage involves using a newly developed feature selection approach called the improved binary flamingo search algorithm (IBFSA), which chooses the most important and relevant features for COVID-19 patients. The proposed multi-strategy improvement process is at the heart of this study to improve the search algorithm. The primary objective is to broaden the algorithm's capabilities by increasing diversity and support exploring the algorithm search space. Additionally, a binary mechanism was used to improve the performance of traditional FSA to make it appropriate for binary FS issues. Two datasets, totaling 3053 and 1446 cases, were used to evaluate the suggested model based on the Support Vector Machine (SVM) and other classifiers. The results showed that IBFSA has the best performance compared to numerous previous swarm algorithms. It was noted, that the number of feature subsets that were chosen was also drastically reduced by 88% and obtained the best global optimal features.</p> </abstract>
The extraction of features from unstructured clinical data of Covid-19 patients is critical for guiding clinical decision-making and diagnosing this viral disease. Furthermore, an early and accurate diagnosis of COVID-19 can reduce the burden on healthcare systems. In this paper, an improved Term Weighting technique combined with Parts-Of-Speech (POS) Tagging is proposed to reduce dimensions for automatic and effective classification of clinical text related to Covid-19 disease. Term Frequency-Inverse Document Frequency (TF-IDF) is the most often used term weighting scheme (TWS). However, TF-IDF has several developments to improve its drawbacks, in particular, it is not efficient enough to classify text by assigning effective weights to the terms in unstructured data. In this research, we proposed a modification term weighting scheme: RTF-C-IEF and compare the proposed model with four extraction methods: TF, TF-IDF, TF-IHF, and TF-IEF. The experiment was conducted on two new datasets for COVID-19 patients. The first dataset was collected from government hospitals in Iraq with 3053 clinical records, and the second dataset with 1446 clinical reports, was collected from several different websites. Based on the experimental results using several popular classifiers applied to the datasets of Covid-19, we observe that the proposed scheme RTF-C-IEF achieves is a consistent performer with the best scores in most of the experiments. Further, the modified RTF-C-IEF proposed in the study outperformed the original scheme and other employed term weighting methods in most experiments. Thus, the proper selection of term weighting scheme among the different methods improves the performance of the classifier and helps to find the informative term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.