The recent sky-rocketing performance of perovskite solar cells has triggered a strong interest in further upgrading the fabrication techniques to meet the scalability requirements of the photovoltaic industry. The integration of vapor-deposition into the solution process in a sequential fashion can boost the uniformity and reproducibility of the perovskite solar cells.Besides, mixed-halide perovskites have exhibited outstanding crystallinity as well as higher stability compared with iodide-only perovskite. An extensive study was carried out to identify a reproducible process leading to highly crystalline perovskite films that when integrated into solar cells exhibited high power conversion efficiency (max. 19.8%). This was achieved by optimizing the deposition rate of the PbI2 layer as well as by inserting small amounts of methylammonium (MA) bromide and chloride salts to the primary MAI salt in the solution-based conversion step. 3The optimum MABr/MAI molar ratio leading to the most efficient and stable solar cells was found to be 0.4. Stabilities were in excess of 90 hours for p-i-n type solar cells. This reproducible approach towards the fabrication of triple halide perovskites using a hybrid vapor-solution method is a promising method towards scalable production techniques.Recently, Rafizadeh et. al. used a hybrid vapor-solution method to fabricate planar MAPI-based devices with 18.9% efficiency in the n-i-p structure 26 . In that work, TiO2 was used as the Supporting Information.XRD, AFM, and, SEM of the PbI2 layer deposited at different rates, device statistical data depending on PbI2 deposition rate, XRD of MAPI-BrCl depending on MACl concentration, the effect of MABr/MAI ratio on the absorbance edge and on the Shockley-Queisser limit and average values of J-V parameters, stability analysis of the devices.
Wide-bandgap perovskite solar cells (WBG-PSCs), when partnered with Si bottom cells in tandem configuration, can provide efficiencies up to 44%; yet, the development of stable, efficient, and scalable WBG-PSCs is required. Here, the utility of the hybrid evaporation-solution method (HESM) is investigated to meet these demanding requirements via its unique advantages including ease of control and reproducibility. A PbI 2 /CsBr layer is co-evaporated followed by coating of organic-halide solutions in a green solvent. Bandgaps between 1.55-1.67 eV are systematically screened by varying CsBr and MABr content. Champion efficiencies of 21.06% and 20.35% in cells and 19.83% and 18.73% in mini-modules (16 cm 2 ) for perovskites with 1.64 and 1.67 eV bandgaps are achieved, respectively. Additionally, 18.51%-efficient semi-transparent WBG-PSCs are implemented in 4T perovskite/bifacial silicon configuration, reaching a projected power output of 30.61 mW cm −2 based on PD IEC TS 60904-1-2 (BiFi200) protocol. Despite similar bandgaps achieved by incorporating Br via MABr solution and/or CsBr evaporation, PSCs having a perovskite layer without MABr addition show significantly higher thermal and moisture stability. This study proves scalable, highperformance, and stable WBG-PSCs are enabled by HESM, hence their use in tandems and in emerging applications such as indoor photovoltaics are now within reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.