For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150–200 nm) to a few μm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5–12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble–substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble–substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon.
Graphitic carbon nitride (G-C3N4) was synthesized through the direct combustion of urea in the air. The CoS-Co2O3/G-C3N4 composite was synthesized via the hydrothermal method of G-C3N4 using cobalt salts. The morphological and chemical structures were determined through XRD, XPS, SEM, and TEM. XRD and XPS analyses confirmed the chemical structure, function groups, and elements percentage of the prepared nanocomposite. SEM measurements illustrated the formation of G-C3N4 sheets, as well as the flower shape of the CoS-Co2O3/G-C3N4 composite, evidenced through the formation of nano appendages over G-C3N4 sheets. TEM confirmed the 2D nanosheets of G-C3N4 with an average width and length of 80 nm and 170 nm, respectively. Two symmetric electrodes for the supercapacitor from the CoS-Co2O3/G-C3N4 composite. Electrochemical measurements were carried out to determine the charge/discharge, cyclic voltammetry, stability, and impedance of the prepared supercapacitor. The measurements were carried out under acid (0.5 M HCL) and basic (6.0 M NaOH) mediums. The charge and discharge lifetime values in the acid and base medium were 85 and 456 s, respectively. The cyclic voltammetry behavior was rectangular in a base medium for the pseudocapacitance feature. The supercapacitor had 100% stability retention up to 600 cycles; then, the stability decreased to 98.5% after 1000 cycles. The supercapacitor displayed a specific capacitance (CS) of 361 and 92 F/g, and an energy density equal to 28.7 and 30.2 W h kg−1 in the basic and acidic mediums, respectively. Our findings demonstrate the capabilities of supercapacitors to become an alternative solution to batteries, owing to their easy and low-cost manufacturing technique.
Graphitic carbon nitride (G-C3N4) and NiS-NiO/G-C3N4 nanocomposite have been synthesized via combustion and hydrothermal techniques, respectively. The chemical and morphological properties of these materials were confirmed using different analytical methods. SEM confirms the formation of G-C3N4 sheets containing additional petal-like shapes of NiS-NiO nanoparticles. The electrochemical testing of NiS-NiO/G-C3N4 symmetric supercapacitors is carried out from 0.6 M HCl electrolyte. Such testing includes charge/discharge, cyclic voltammetry, impedance, and supercapacitor stability. The charge/discharge time reaches 790 s at 0.3 A/g, while the cyclic voltammetry curve forms under a high surface area. The produced specific capacitance (CS) and energy density values are 766 F/g and 23.55 W.h.kg−1, correspondingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.