In this article, we present a wood procurement problem that arises in Eastern Canada. We solve a multi-period wood supply planning problem, while taking into account bucking decisions. Furthermore, we present a new form of flexibility which allows the harvesting capacity to change from one time period to another. We study the impact of such flexibility upon the harvesting cost. We assess the performance of the problem by comparing it with a variant where the harvesting capacity is fixed during sites' harvesting. To address this problem, we develop a hybrid approach based on both constraint and mathematical programming. In the first phase, we propose a constraint programming model dealing with forest sites harvesting and bucking problems. The result of this model is used as part of an initial solution for the whole problem formulated as a mixed integer model. We test the two versions of the problem on a set of different demand instances and we compare their results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.