During recent decades, consumers have been continuously moving towards the substitution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accumulated, causing environmental problems. Interestingly, these agri-food by-products are potential sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be found in plenty of plants and herbs, they have been traditionally used for medicinal and other purposes, such as the leather industry. This fact is explained by the fact that they exert plenty of different biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and pharmaceutical industry. Consequently, this review article is directed towards the description of the biological activities exerted by tannins as they could be further extracted from by-products of the agri-food industry to produce high-added-value products.
A B S T R A C TThe identification of more than three perfumes is difficult and no analytical tool can completely replace the human olfactory system for fragrance classification. Indeed, no analytical system can mimic the human fragrance perception, being the recognition of perfume aroma patterns by conventional or sensor-based analytical tools a challenging task. For the perfume sector, the possibility of applying fast, cost-effective and green analytical devices for perfume analysis would represent a huge economic revenue. Since the perfume aroma pattern will depend on the composition of the liquid phase and on the diffusion properties of their volatile components, this work aimed to apply a potentiometric electronic tongue, comprising non-specific cross-sensitive lipid polymeric membranes, combined with chemometric techniques, as a novel perfume classifier. The multisensors device allowed establishing perfumes' unique fingerprints, which were successfully used to discriminate men from women perfumes, to identify the perfume aroma family (Citric-Aromatic, Floral, Floral-Fruity, Floral-Oriental, Floral-Woody, Woody-Oriental and Woody-Spicy) and, assessing the perfume storage time-period (≤ 9 months; 9-24 months; and, ≥ 24 months). The established linear discriminant models were based on single-run potentiometric profiles gathered by sub-sets of sensors selected using the simulated annealing algorithm, which enabled achieving correct classification rates of 93-100% (for leave-one-out cross-validation procedure). The satisfactory performance of the electronic tongue demonstrates the versatility of the proposed approach as a practical perfume preliminary classifier sensor device, which industrial application may be foreseen in a near future, contributing to a green-sustained economic growth of the perfume industry.
The increasing world population entails a great necessity to produce large amounts of food, leading to an increase in organic waste. Unlike traditional agriculture, based on the circular sustainability, modern agriculture produces tons of residues, which are accumulated in landfills or, in some cases, burnt. Numerous studies have demonstrated that agricultural residues are rich in bioactive compounds, particularly phenolic compounds, with antioxidant properties. Antioxidant activity has been widely related with protective effects and prevention potential for different diseases. Also, the scavenging and protective effects of antioxidant compounds have shown a connection and synergistic effect with other biological properties, such as anti-inflammatory, anti-tumor, anti-aging, neuroprotective, cardioprotective, or antidiabetic. These compounds can be applied in several fields, including food, cosmetic, and pharmaceutical industry. This chapter will be focused on the interconnected bioactive properties and possible applications of plant-origin compounds with antioxidant potential to valorize different agricultural waste.
The increasing world population entails a great necessity to produce large amounts of food, leading to an increase in organic waste. Unlike traditional agriculture, based on the circular sustainability, modern agriculture produces tons of residues, which are accumulated in landfills or, in some cases, burnt. Numerous studies have demonstrated that agricultural residues are rich in bioactive compounds, particularly phenolic compounds, with antioxidant properties. Antioxidant activity has been widely related with protective effects and prevention potential for different diseases. Also, the scavenging and protective effects of antioxidant compounds have shown a connection and synergistic effect with other biological properties, such as anti-inflammatory, anti-tumor, anti-aging, neuroprotective, cardioprotective, or antidiabetic. These compounds can be applied in several fields, including food, cosmetic, and pharmaceutical industry. This chapter will be focused on the interconnected bioactive properties and possible applications of plant-origin compounds with antioxidant potential to valorize different agricultural waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.