Introduction. Respiratory syncytial virus (RSV) is the most frequently identified viral agent in children with lower respiratory tract infection (LRTI). No data are available to date regarding RSV genotypes circulating in Tunisia. Aim. The aim of the present study was to investigate the genetic variability of the glycoprotein G gene in Tunisian RSV strains. Methodology. Nasopharyngeal aspirates were collected from infants hospitalized for LRTI in five Tunisian hospitals. All specimens were screened for RSV by a direct immunofluorescence assay (DIFA). To molecularly characterize Tunisian RSV strains, a phylogenetic analysis was conducted. Randomly selected positive samples were subjected to reverse transcription PCR amplifying the second hyper-variable region (HVR2) of the G gene. Results. Among a total of 1417 samples collected between 2015 and 2018, 394 (27.8 %) were positive for RSV by DIFA. Analysis of 61 randomly selected RSV strains revealed that group A RSV (78.7 %) predominated during the period of study as compared to group B RSV (21.3 %). The phylogenetic analysis showed that two genotypes of RSV-A were co-circulating: the ON1 genotype with a 72-nt duplication in HVR2 of the G gene was predominant (98.0 % of RSV-A strains), while one RSV-A strain clustered with the NA1 genotype (2.0 %). Concerning Tunisian group B RSV strains, all sequences contained a 60-nt insertion in HVR2 and a clustered BA10 genotype. Conclusion. These data suggest that RSV-A genotype ON1 and RSV-B genotype BA10, both with duplications in the G gene, were widely circulating in the Central coastal region of Tunisia between 2015 and 2018.
Objective Respiratory viruses are the most important cause of lower respiratory tract infections (LRTI) in children. Meteorological factors can influence viral outbreaks. The objective of this study was to determine the association between climate variables and respiratory virus detection. Methods Multicenter prospective 1-year surveillance was conducted among children hospitalized for LRTI in Tunisia. Nasopharyngeal aspirates were tested by direct immunofluorescence assay (DIFA) for the detection of respiratory syncytial virus (RSV); adenovirus (AdV); influenza virus (IFV) A and B; and parainfluenza virus 1, 2, and 3 (PIV1/2/3). Samples were further analyzed by reverse-transcription polymerase chain reaction for the detection of human metapneumovirus (hMPV). Monthly meteorological data were determined by consulting the National Institute of Meteorology and the World Weather Online Meteorological Company websites. Pearson's correlation tests were used to determine the statistical association between the detection of respiratory viruses and climatic characteristics. Results Among 572 patients, 243 (42.5%) were positive for at least one virus. The most frequently detected viruses by DIFA were RSV (30.0%), followed by IFVA (3.8%), IFVB (3.5%), PIV (0.9%), and AdV (0.9%). HMPV was detected in 13 RSV-negative samples (3.3%). Dual infections were detected in seven cases (1.2%). Monthly global respiratory viruses and RSV detections correlated significantly with temperature, rainfall, cloud cover, wind speed, wind temperature, and duration of sunshine. Monthly IFV detection significantly correlated with rainfall, wind speed, wind temperature, and duration of sunshine. HMPV detection significantly correlated with temperature and wind temperature. Conclusion Respiratory viral outbreaks are clearly related to meteorological factors in Tunisia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.