We report the use of switchable lipids to improve the endosomal escape and cytosolic delivery of cell-impermeable compounds. The system is based on a conformational reorganization of the lipid structure upon acidification, as demonstrated by NMR spectroscopic studies. When incorporated in a liposome formulation, the switchable lipids triggered bilayer destabilization through fusion even in the presence of poly(ethylene glycol). We observed 88 % release of sulforhodamine B in 15 min at pH 5, and the liposome formulations demonstrated high stability at pH 7.4 for several months. By using sulforhodamine B as a model of a highly polar drug, we demonstrated fast cytosolic delivery mediated by endosomal escape in HeLa cells, and no toxicity.
A pH-sensitive molecular switch able to change its conformation upon protonation at endosomal pH values is embedded into the structure of cationic lipidoid materials, thus conferring endosomal escape properties. Involvement of the conformational switch in the endosomal escape process was confirmed and leading material identified was able to induce efficient gene knockdown both in vitro and in vivo. The lipid nanoparticles reported here are promising for therapeutic applications and this work could serve as a template for future design of stimulus-responsive (ionic, redox, light) molecular switch for drug and gene delivery.
Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.
Liposomes must protect their cargo during delivery and then release it quickly and selectively at the target site. In their Communication on J. Leblond et al. present the development of switchable liposomes that exploit the acidification that occurs after endocytosis. These liposomes are stable for months under physiological conditions and release their content in less than 15 min at acidic pH values. This approach drastically improves drug delivery to the cytosol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.