Surface acoustic wave sensors (SAWs) are excellent at detecting volatile organic compounds (VOCs) since a sensing layer can be created by spreading a thin film of material across the delay line. This critically enhances performance as it is sensitive to the physical phenomena of interest. This study aims to provide a thorough investigation of the sensitivity of polymer-coated SAW-based gas sensors to VOCs using simulations via the finite element method (FEM). As such, quartz was chosen as the piezoelectric substrate while polymeric materials were chosen as the sensing layers due to their high sensitivity, low energy consumption, short response time, performance at room temperature, and reversibility after exposure to an analyte. The polymeric materials chosen were: (1) polyisobutylene (PIB), (2) polydimethylsiloxane (PDMS), (3) polyisoprene (PIP), (4) polyimide (PI), and (5) phenylmethyldiphenylsilicone (OV25). The VOCs chosen for investigation were: (1) dichloromethane (DCM), (2) trichloroethylene (TCE), (3) 1,2-dichloroethylene (DCE), and (4) carbon tetrachloride (CCl4). The performance of each polymer-coated SAW sensor was evaluated in terms of frequency shift and sensitivity to each VOC in FEM simulations. Our study found that the PIB-coated sensor had the highest sensitivity (4.0571 kHz/ppm) to DCM vapor and good sensitivity (45.257 kHz/ppm) to TCE vapor. However, the performance of each polymer-coated sensor varied depending on the type of VOC being tested. As an example, while the OV25-coated sensor was more sensitive (52.57 kHz/ppm) than the PIB-coated sensor (53.54 kHz/ppm) to TCE vapor regardless of the concentration, the PIB-coated sensor was more sensitive to DCM vapor at both low (4.06 kHz/ppm) and high (3.54 kHz/ppm) concentrations than the OV25-coated sensor. Therefore, the results of our FEM simulations indicate that polymer-coated SAW-based gas sensors are highly capable of self-powered VOC detection. ABSTRAK: Sensor gelombang akustik permukaan (SAW) adalah sangat baik dalam mengesan sebatian organik meruap yang tidak stabil (VOCs), kerana lapisan pengesan dapat dihasilkan dengan melapis nipis bahan pada lapisan garis tunda. Cara ini dapat menambah baik prestasi kerana ianya sensitif kepada fenomena fizikal yang dituju. Kajian ini bertujuan bagi menyediakan kajian menyeluruh terhadap kesensitifan sensor gas berasaskan SAW bersalut polimer pada VOC menggunakan simulasi melalui kaedah unsur terhingga (FEM). Oleh itu, kuarza dipilih sebagai substrat piezoelektrik manakala bahan polimer dipilih sebagai lapisan penginderaan berdasarkan kepekaan tinggi, penggunaan tenaga rendah, respon masa singkat, prestasi suhu bilik, dan faktor keboleh-balikan setelah terdedah kepada analit. Bahan polimer yang dipilih adalah: (1) polisobutilena (PIB), (2) polidimethilsiloxana (PDMS), (3) polisoprena (PIP), (4) polimida (PI), dan (5) phenilmethildiphenilsilikon (OV25). VOC terpilih bagi kajian adalah: (1) diklorometana (DCM), (2) trikloretilena (TCE), (3) 1,2-dikloroetilena (DCE), dan (4) karbon tetraklorida (CCl4). Prestasi setiap sensor SAW bersalut polimer dinilai berdasarkan peralihan frekuensi dan kesensitifan pada setiap VOC simulasi FEM. Dapatan kajian menunjukkan sensor bersalut-PIB mempunyai kesensitifan paling tinggi (4.0571 kHz/ppm) terhadap wap DCM dan kepekaan yang baik (45.257 kHz / ppm) terhadap wap TCE. Walau bagaimanapun, prestasi setiap sensor bersalut polimer adalah berbeza bergantung kepada jenis VOC yang sedang diuji. Sebagai contoh, sensor bersalut OV25 adalah lebih sensitif (52,57 kHz/ppm) daripada sensor bersalut PIB (53,54 kHz/ppm) pada wap TCE tanpa mengira kepekatan. Manakala sensor bersalut PIB lebih sensitif terhadap wap DCM pada kedua-dua kepekatan rendah (4.06 kHz/ppm) dan tinggi (3.54 kHz/ppm) daripada sensor bersalut-OV25. Oleh itu, hasil simulasi FEM menunjukkan bahawa sensor gas berasaskan SAW bersalut polimer adalah sangat berpotensi sebagai pengesan VOC berkuasa sendiri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.