Despite the increasing adaption of automated text analysis in communication studies, its strengths and weaknesses in framing analysis are so far unknown. Fewer efforts have been made to automatic detection of networked frames. Drawing on the recent developments in this field, we harness a comparative exploration, using Latent Dirichlet Allocation (LDA) and a human-driven qualitative coding process on three different samples. Samples were comprised of a dataset of 4,165,177 million tweets collected from Iranian Twittersphere during the Coronavirus crisis, from 21 January, 2020 to 29 April, 2020. Findings showed that while LDA is reliable in identifying the most prominent networked frames, it misses to detects less dominant frames. Our investigation also confirmed that LDA works better on larger datasets and lexical semantics. Finally, we argued that LDA could give us some primary intuitions, but qualitative interpretations are indispensable for understanding the deeper layers of meaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.