In order for machine learning to be trusted in many applications, it is critical to be able to reliably explain why the machine learning algorithm makes certain predictions. For this reason, a variety of methods have been developed recently to interpret neural network predictions by providing, for example, feature importance maps. For both scientific robustness and security reasons, it is important to know to what extent can the interpretations be altered by small systematic perturbations to the input data, which might be generated by adversaries or by measurement biases. In this paper, we demonstrate how to generate adversarial perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted label, yet have very different interpretations. We systematically characterize the robustness of interpretations generated by several widely-used feature importance interpretation methods (feature importance maps, integrated gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all cases, our experiments show that systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly susceptible to adversarial attack. Our analysis of the geometry of the Hessian matrix gives insight on why robustness is a general challenge to current interpretation approaches.
Video based deep learning evaluation of cardiac ultrasound accurately identifies cardiomyopathy and predict ejection fraction, the most common metric of cardiac function.• Using human tracings obtained during standard clinical workflow, deep learning semantic segmentation accurately labels the left ventricle frame-by-frame, including in frames without prior human annotation.• Computational cardiac function analysis allows for beat-by-beat assessment of ejection fraction, which more accurately assesses cardiac function in patients with atrial fibrillation, arrhythmias, and heart rate variability.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (R 2 = 0.74 and R 2 = 0.70), and ejection fraction (R 2 = 0.50), as well as predicted systemic phenotypes of age (R 2 = 0.46), sex (AUC = 0.88), weight (R 2 = 0.56), and height (R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Early prediction of patient mortality risks during a pandemic can decrease mortality by assuring efficient resource allocation and treatment planning. This study aimed to develop and compare prognosis prediction machine learning models based on invasive laboratory and noninvasive clinical and demographic data from patients’ day of admission. Three Support Vector Machine (SVM) models were developed and compared using invasive, non-invasive, and both groups. The results suggested that non-invasive features could provide mortality predictions that are similar to the invasive and roughly on par with the joint model. Feature inspection results from SVM-RFE and sparsity analysis displayed that, compared with the invasive model, the non-invasive model can provide better performances with a fewer number of features, pointing to the presence of high predictive information contents in several non-invasive features, including SPO2, age, and cardiovascular disorders. Furthermore, while the invasive model was able to provide better mortality predictions for the imminent future, non-invasive features displayed better performance for more distant expiration intervals. Early mortality prediction using non-invasive models can give us insights as to where and with whom to intervene. Combined with novel technologies, such as wireless wearable devices, these models can create powerful frameworks for various medical assignments and patient triage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.