In this paper, non-linear free vibration analysis of nano-beam has been studied. The non-local strain gradient theory and curvature tensor are used to show the size effect. The length scale parameter expresses the effect of strain gradient tensor in the non-local strain gradient theory. However, the aim of this article is to show the simultaneous effect of curvature and strain gradient tensors in non-linear vibration of functionally graded porous nano-beams. The effect of curvature tensor is demonstrated with the curvature tensor dependent parameter. Considering non-linear Von Kármán strains and Euler–Bernoulli beam theory, the governing vibrational equation of FG porous nano-beams are derived using Hamilton’s principle in the presence of strain gradient and curvature tensors simultaneously. The non-linear differential equation is extracted by using Galerkin’s method and the non-linear natural frequency of nano-beam is obtained according to Hamiltonian approach. Results represent the simultaneous effects of the length scale and curvature tensor dependent parameters on dimensionless non-linear natural frequencies. Also effects of different parameters such as non-local parameter, length scale parameter, porosity volume index, and power-law index are discussed in the presence and absence of the curvature tensor dependent parameter. Also, the beginning points of stiffness-hardening and stiffness-softening of nano-beam are always constant values in the non-local strain gradient theory, whereas considering the curvature tensor changes the beginning points of stiffness-hardening and stiffness-softening. The results are also compared with previous researches for validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.