Adsorption desalination utilizes the discrete adsorption of the water vapor from the evaporator, and is capable of being discharged to the condenser. This study illuminated an advanced cycle of mass and heat recovery among beds, condensers, and evaporators. Morover, the thermodynamic modeling of adsorption desalination systems (ADS) under different operating conditions was investigated. Furthermore, its effect on the evaporator vapor production and the water vapor adsorption and desorption in the adsorption beds were accounted for. Parenthetically, the mathematical model of ADS thermodynamics was validated with the experimental data. Besides, the advanced ADS modeling was conducted via mass and heat recovery among beds, condensers, and evaporators. In addition to the amount of desalinated water, the time history chart of the equipment applied in the process with and without the thermal and mass recovery is also illustrated. Finally, under such operating conditions, the specific daily water production (SDWP) advanced ADS is 153% higher than conventional ADS.
This paper presents the development of an advanced adsorption desalination system (ADS) with heat and mass recovery. By means of internal heat and mass recovery, this adsorption desalination system (ADS), offers a significantly higher performance ratio compared to the conventional systems. After vapor desorption, the pressure difference in the hot bed is first transmitted to the cold bed using mass recovery. Then, the heat from the hot bed is transferred into the cold bed and, eventually, to the condenser and evaporator, by means of the cold water. Numerical simulations for this system are compared to a verified experimental model, and then developed to study the effect of the operating parameters. The level of SDWP or specific daily water production for this ADS was found to be 13.48 m^3/ton of silica gel/day at a hot water temperature of 92.5 (°C) and a cold water temperature of 30 (°C). Consequently, in these operating conditions, the SDWP of the advanced ADS was found to be 153% more than the conventional ADS. Also, at the same temperature conditions, the performance ratio of the ADS with heat and mass recovery was 35% higher than the ADS without heat and mass recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.