This paper is concerned with the filtering problem in continuous-time. Three algorithmic solution approaches for this problem are reviewed: (i) the classical Kalman-Bucy filter which provides an exact solution for the linear Gaussian problem, (ii) the ensemble Kalman-Bucy filter (EnKBF) which is an approximate filter and represents an extension of the Kalman-Bucy filter to nonlinear problems, and (iii) the feedback particle filter (FPF) which represents an extension of the EnKBF and furthermore provides for an consistent solution in the general nonlinear, non-Gaussian case. The common feature of the three algorithms is the gain times error formula to implement the update step (to account for conditioning due to the observations) in the filter. In contrast to the commonly used sequential Monte Carlo methods, the EnKBF and FPF avoid the resampling of the particles in the importance sampling update step. Moreover, the feedback control structure provides for error correction potentially leading to smaller simulation variance and improved stability properties. The paper also discusses the issue of non-uniqueness of the filter update formula and formulates a novel approximation algorithm based on ideas from optimal transport and coupling of measures. Performance of this and other algorithms is illustrated for a numerical example.
Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this paper. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-N controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error (m.s.e.) converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-N algorithm. The analysis is used to prove weak convergence of the empirical distribution as N → ∞. For a certain simplified filtering problem, analytical comparison of the m.s.e. with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature.
The purpose of this work is to make a case for epidemiological models with fractional exponent in the contribution of sub-populations to the incidence rate. More specifically, we question the standard assumption in the literature on epidemiological models, where the incidence rate dictating propagation of infections is taken to be proportional to the product between the infected and susceptible sub-populations; a model that relies on strong mixing between the two groups and widespread contact between members of the groups. We contend, that contact between infected and susceptible individuals, especially during the early phases of an epidemic, takes place over a (possibly diffused) boundary between the respective sub-populations. As a result, the rate of transmission depends on the product of fractional powers instead. The intuition relies on the fact that infection grows in geographically concentrated cells, in contrast to the standard product model that relies on complete mixing of the susceptible to infected sub-populations. We validate the hypothesis of fractional exponents (1) by numerical simulation for disease propagation in graphs imposing a local structure to allowed disease transmissions and (2) by fitting the model to the JHU CSSE COVID-19 Data for the period Jan-22-20 to April-30-20, for the countries of Italy, Germany, France, and Spain.
Abstract-This paper is concerned with numerical algorithms for gain function approximation in the feedback particle filter. The exact gain function is the solution of a Poisson equation involving a probability-weighted Laplacian. The problem is to approximate this solution using only particles sampled from the probability distribution. Two algorithms are presented: a Galerkin algorithm and a kernel-based algorithm. Both the algorithms are adapted to the samples and do not require approximation of the probability distribution as an intermediate step. The paper contains error analysis for the algorithms as well as some comparative numerical results for a non-Gaussian distribution. These algorithms are also applied and illustrated for a simple nonlinear filtering example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.