We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101 (2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We demonstrate a good correspondence between the experiment and previously developed theory. We also propose a simple measure which characterizes the macroscopic incoherence-coherence transition in a finite-size ensemble.
We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear or nonlinear feedback loop. While in the linear case we observe a standard Kuramoto-like synchronization transition, in the nonlinear case, with increase of the coupling strength, we first observe a transition to full synchrony and then a desynchronization transition to a quasiperiodic state. However, in this state the ensemble remains coherent so that the amplitude of the mean field is nonzero, but the frequency of the mean field is larger than frequencies of all oscillators. Next, we analyze effects of common periodic forcing of the linearly or nonlinearly coupled ensemble and demonstrate regimes when the mean field is entrained by the force whereas the oscillators are not.
In this study, a new spiral dual-band antenna integrated with an optical system for a small CubeSat spacecraft was proposed. It is challenging to design an antenna with a limited space on a CubeSat platform. To improve the space utilization, an antenna was designed based on the concept of not occupying the sides of the CubeSat. A feature of the proposed antenna system is its compactness, dual-band operation in the L-and S-bands, and possibility of integration with spacecraft cameras. As a result of the study, reflection coefficients of -18 dB and -23 dB and gain of 6.8 dBi and 7.4 dBi, respectively, were achieved at resonant frequencies of 1.7 GHz and 2.45 GHz. The conical shape of the spiral antenna allows the optical system to increase the coverage area, and a simple deployment system with feedback ensures the mission safety. These properties make the proposed antenna suitable for CubeSat systems.INDEX TERMS CubeSat antenna, dual-band antenna, Earth observation, helix antenna
The CubeSat concept has become very popular with both university groups and researchers, space agencies, governments and companies. CubeSat offers a fast and affordable way for a wide range of stakeholders to be active in space. Due to the high degree of modularity and widespread use of offtheshelf commercial subsystems, CubeSat projects can be prepared for flight much faster than using traditional satellite schedules usually within one to two years. In this paper, we have considered a model of an S and X band patch antenna for CubeSat nanosatellites in the field of Earth remote sensing (ERS). The antenna dimensions were determined and designed according to the dimensions of the small spacecraft. The shape of the emitting part was formed using a geometric fractal with an anisotropic structure. Using the CST Microwave Studio software package, the electrodynamic, frequency characteristics and directional properties of the antenna were determined. The results of computer simulations demonstrate that the developed antenna concept has a multiband property and meets all the parameters that are necessary for receiving and transmitting data in the S and X bands. It was also found that the anisotropic fractal structure allows the antenna to have several operating frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.