The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance. However, these algorithms need training over significant amount of ground truth data. In the context of biomedical applications, collecting ground truth data, particularly at the personalized level is challenging, burdensome, and in some cases infeasible. Our objective is to establish physics-informed neural network (PINN) models for physiological time series data that would use minimal ground truth information to extract complex cardiovascular information. We achieve this by building Taylor’s approximation for gradually changing known cardiovascular relationships between input and output (e.g., sensor measurements to blood pressure) and incorporating this approximation into our proposed neural network training. The effectiveness of the framework is demonstrated through a case study: continuous cuffless BP estimation from time series bioimpedance data. We show that by using PINNs over the state-of-the-art time series models tested on the same datasets, we retain high correlations (systolic: 0.90, diastolic: 0.89) and low error (systolic: 1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg) while reducing the amount of ground truth training data on average by a factor of 15. This could be helpful in developing future AI algorithms to help interpret pervasive physiologic data using minimal amount of training data.
The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model the input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance. However, these algorithms need to be trained with a significant amount of ground truth data. In the context of biomedical applications, collecting ground truth data, particularly at the personalized level is challenging, burdensome, and in some cases infeasible. Our objective is to establish physics-informed neural network (PINN) models for physiological time series data that would reduce reliance on ground truth information. We achieve this by building Taylor's approximation for the gradually changing known cardiovascular relationships between input and output (e.g., sensor measurements to blood pressure) and incorporating this approximation into our proposed neural network training. The effectiveness of the framework is demonstrated through a case study: continuous cuffless BP estimation from time series bioimpedance data. We show that by using PINNs over the state-of-the-art time series regression models tested on the same datasets, we retain a high correlation (systolic: 0.90, diastolic: 0.89) and low error (systolic: 1.3 ± 7.6 mmHg, diastolic: 0.6 ± 6.4 mmHg) while reducing the amount of ground truth training data on average by a factor of 15. This could be helpful in developing future AI algorithms to help interpret pervasive physiologic data using minimal amount of training data.
The paper focuses on how the colonizers who in this play are Prospero and Miranda in particular, endeavor to inflict their own socio-cultural precept including their language to make the colonized fully unprotected in The Tempest as a colonial play, but eventually fail to fulfill this attempt. In addition, the high importance of learning the language of the colonizer by the colonized gets illuminated which finally contributes to Caliban so as to undermine the roots of the colonizer in the colony. This article fully evaluates affected literary works by The Tempest, the importance of transferring the colonizer’s language to the colony, and the main colonizer and his manners and attitudes towards the colonized; it also brings forth postcolonial concepts including Mimicry, Orientalism, the double consciousness of the colonized and his unhomeliness. Furthermore, it features the dirge situation of mimic men who come across a disappointing dead end from both colonizers and the colonized. After all, this article reflects on the ever-presence of ambivalence and mimicry in colonial discourse and also the vital importance of violence as an inseparable part of the decolonization.KEYWORDS: Colonialism, Postcolonialism, Ambivalence, Mimicry, Language, Violence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.