In this paper simulation of cavitating flow over the Clark-Y hydrofoil is reported using the large eddy simulation (LES) turbulence model and volume of fluid (VOF) technique. We applied an incompressible LES modelling approach based on an implicit method for the subgrid terms. To apply the cavitation model, the flow has been considered as a single fluid, two-phase mixture. A transport equation model for the local volume fraction of vapour is solved and a finite rate mass transfer model is used for the vapourization and condensation processes. A compressive volume of fluid (VOF) method is applied to track the interface of liquid and vapour phases. This simulation is performed using a finite volume, two phase solver available in the framework of the OpenFOAM (Open Field Operation and Manipulation) software package. Simulation is performed for the cloud and super-cavitation regimes, i.e., r = 0.8, 0.4, 0.28. We compared the results of two different mass transfer models, namely Kunz and Sauer models. The results of our simulation are compared for cavitation dynamics, starting point of cavitation, cavity's diameter and force coefficients with the experimental data, where available. For both of steady state and transient conditions, suitable accuracy has been observed for cavitation dynamics and force coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.