COVID-19 looks to be the worst pandemic disease in the last decades due to its number of infected people, deaths, and the staggering demand for healthcare services, especially hospitals. The first and most important step is to identify the patient flow through a certain process. For the second step, there is a crucial need for predicting the future patient arrivals for planning especially at the administrative level of a hospital. This study aims to first simulate the patient flow process and then predict the future entry of patients in a hospital as the case study. Also, according to the system status, this study suggests some policies based on different probable scenarios and assesses the outcome of each decision to improve the policies. The simulation model is conducted by Arena.15 software. The seasonal auto-regressive integrated moving average (SARIMA) model is used for patient's arrival prediction within 30 days. Different scenarios are evaluated through a data envelopment analysis (DEA) method. The simulation model runs for predicted patient's arrival for the least efficient scenario and the outputs compare the base run scenario. Results show that the system collapses after 14 days according to the predictions and simulation and the bottleneck of the ICU and CCU departments becomes problematic. Hospitals can use simulation and also prediction tools to avoid the crisis to plan for the future in the pandemic.
Automatic brain tumor detection in MR Images is one of the basic applications of machine vision in medical image processing, which, despite much research, still needs further development. Using multiple machine learning techniques as an ensemble system is one of the solutions that can be effective in achieving this goal. In this paper, a novel method for diagnosing brain tumors by combining data mining and machine learning techniques has been proposed. In the proposed method, each image is initially pre-processed to eliminate its background region and identify brain tissue. The Social Spider Optimization (SSO) algorithm is then utilized to segment the MRI Images. The MRI Images segmentation allows for a more precise identification of the tumor region in the image. In the next step, the distinctive features of the image are extracted using the SVD technique. In addition to removing redundant information, this strategy boosts the speed of the processing at the classification stage. Finally, a combination of the algorithms Naïve Bayes, Support vector machine and K-nearest neighbor is used to classify the extracted features and detect brain tumors. Each of the three algorithms performs feature classification individually, and the final output of the proposed model is created by integrating the three independent outputs and voting the results. The results indicate that the proposed method can diagnose brain tumors in the BRATS 2014 dataset with an average accuracy of 98.61%, sensitivity of 95.79% and specificity of 99.71%. Additionally, the proposed method could diagnose brain tumors in the BTD20 database with an average accuracy of 99.13%, sensitivity of 99% and specificity of 99.26%. These results show a significant improvement compared to previous efforts. The findings confirm that using the image segmentation technique, as well as the ensemble learning, is effective in improving the efficiency of the proposed method.
The supplier selection problem is one of the most important issues in supply chain management. So, many papers have investigated the mentioned problem. However, the related literature shows that researchers had less attention to the sustainability and resilience aspects based on the customer preferences in supplier selection problem. To cover this gap, this research tries to investigate the customer-based sustainable-resilient supplier selection problem. In this way, a Markovian-based fuzzy decision-making method is proposed. At the outset, the customer preferences are evaluated using a combination of the quality function deployment and the Markov transition matrix. Then, by combining the transition matrix and the fuzzy best–worst method, the weights of the indicators are calculated. Finally, the decision matrix is formed and the performance of suppliers is measured based on the multiplication of the decision matrix and vector of sub-criteria weights. Regarding the recent pandemic disruption (COVID-19), the importance of online marketplaces is highlighted more than the past. Hence, this study considers an online marketplace as a case study. Results show that in a pandemic situation, the preferences of customers when they cannot go shopping normally will change after a while. Based on the Markov steady state, these changes are from the priority of price, availability, and performance in initial time to serviceability, reliability, and availability in the future. Finally, based on the FBWM results, from the customer point of view, the top five sub-criteria for sustainable-resilient supplier selection include cost, quality, delivery, responsiveness, and service. So, based on these priorities, the case study potential suppliers are prioritized, respectively.
Dentistry processes include prevention, examination of symptoms, and treatment of oral diseases. Since there are various dental services, exploring the combination of services can help both dentists and patients for planning accurately to follow the treatment process in an appropriate order. The aim of this study is to extract the different dental services’ frequent rules. An integrated LRFM, K-means, and APRIORI approach is proposed and implemented in Python programming language. Furthermore, patients’ characteristics and the services provided to patients for an Iranian dental center as a case study are collected. Customers are first divided into 5 categories via LRFM analysis considering the number of referrals, duration of referrals, duration of the last visit, and the total service fee. Subsequently, they are clustered based on features including age, type of insurance, referrer, and group of services received in six categories. Subsequently, in each cluster, there are patients from several groups (according to the LRFM analysis in the previous step). Finally, the sequential rules for dental services are extracted in each cluster and several scenarios are proposed to dental center managers. Results indicate that the rules of dental services can lead to finding some treatment procedures for special cluster of patients in order to remind them of their subsequent referral. The proposed approach provides a better patient treatment process and results in more profits for service providers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.