Ultrasonography (US) is often the initial imaging modality employed in the evaluation of renal diseases. Despite improvements in B-mode and Doppler imaging, US still faces limitations in the assessment of focal renal masses and complex cysts as well as the microcirculation. The applications of contrast-enhanced US (CEUS) in the kidneys have dramatically increased to overcome these shortcomings with guidelines underlining their importance. This article describes microbubble contrast agents and their role in renal imaging. Microbubble contrast agents consist of a low solubility complex gas surrounded by a phospholipid shell. Microbubbles are extremely safe and well-tolerated pure intravascular agents that can be used in renal failure and obstruction, where computed tomographic (CT) and magnetic resonance (MR) imaging contrast agents may have deleterious effects. Their intravascular distribution allows for quantitative perfusion analysis of the microcirculation, diagnosis of vascular problems, and qualitative assessment of tumor vascularity and enhancement patterns. Low acoustic power real-time prolonged imaging can be performed without exposure to ionizing radiation and at lower cost than CT or MR imaging. CEUS can accurately distinguish pseudotumors from true tumors. CEUS has been shown to be more accurate than unenhanced US and rivals contrast material-enhanced CT in the diagnosis of malignancy in complex cystic renal lesions and can upstage the Bosniak category. CEUS can demonstrate specific enhancement patterns allowing the differentiation of benign and malignant solid tumors as well as focal inflammatory lesions. In conclusion, CEUS is useful in the characterization of indeterminate renal masses and cysts.
The role of whole-body positron emission tomography (PET)/computed tomography (CT) with fluorodeoxyglucose ( FDG fluorodeoxyglucose ) is now established in the assessment of many gynecologic and genitourinary malignant tumors. FDG fluorodeoxyglucose PET/CT has been widely adopted for staging assessments in patients with suspected advanced disease, in cases of suspected disease recurrence, and for determining prognosis in a number of malignancies. A number of pitfalls are commonly encountered when reviewing FDG fluorodeoxyglucose PET/CT scans in gynecologic and genitourinary cases; these pitfalls can be classified into those that yield potential false-positive or false-negative results. Potential false positives include physiologic uptake of FDG fluorodeoxyglucose by the endometrium and ovaries in premenopausal patients, physiologic renal excretion of FDG fluorodeoxyglucose into the ureters and the urinary bladder, and increased FDG fluorodeoxyglucose activity in benign conditions such as uterine fibroids, pelvic inflammatory disease, and benign endometriotic cysts. Potential false negatives include low-level FDG fluorodeoxyglucose uptake by necrotic, mucinous, cystic, or low-grade tumors and the masking of serosal and peritoneal disease by adjacent physiologic bowel or bladder activity. In addition, there are inherent technical limitations-such as motion artifact (from respiratory motion and bowel peristalsis) and the limited spatial resolution of PET-that may limit the assessment of small-volume malignant disease. Knowledge of the key imaging features of physiologic and nonphysiologic FDG fluorodeoxyglucose uptake, in addition to understanding the principles of adequate patient preparation and PET scanning protocols, is important for accurate interpretation of gynecologic and genitourinary oncologic FDG fluorodeoxyglucose PET/CT studies. RSNA, 2017.
Objective To compare the clinical validity and utility of Likert assessment and the Prostate Imaging Reporting and Data System (PI‐RADS) v2 in the detection of clinically significant and insignificant prostate cancer. Patients and Methods A total of 489 pre‐biopsy multiparametric magnetic resonance imaging (mpMRI) scans in consecutive patients were subject to prospective paired reporting using both Likert and PI‐RADS v2 by expert uro‐radiologists. Patients were offered biopsy for any Likert or PI‐RADS score ≥4 or a score of 3 with PSA density ≥0.12 ng/mL/mL. Utility was evaluated in terms of proportion biopsied, and proportion of clinically significant and insignificant cancer detected (both overall and on a ‘per score’ basis). In those patients biopsied, the overall accuracy of each system was assessed by calculating total and partial area under the receiver‐operating characteristic (ROC) curves. The primary threshold of significance was Gleason ≥3 + 4. Secondary thresholds of Gleason ≥4 + 3, Ahmed/UCL1 (Gleason ≥4 + 3 or maximum cancer core length [CCL] ≥6 or total CCL≥6) and Ahmed/UCL2 (Gleason ≥3 + 4 or maximum CCL ≥4 or total CCL ≥6) were also used. Results The median (interquartile range [IQR]) age was 66 (60–72) years and the median (IQR) prostate‐specific antigen level was 7 (5–10) ng/mL. A similar proportion of men met the biopsy threshold and underwent biopsy in both groups (83.8% [Likert] vs 84.8% [PI‐RADS v2]; P = 0.704). The Likert system predicted more clinically significant cancers than PI‐RADS across all disease thresholds. Rates of insignificant cancers were comparable in each group. ROC analysis of biopsied patients showed that, although both scoring systems performed well as predictors of significant cancer, Likert scoring was superior to PI‐RADS v2, exhibiting higher total and partial areas under the ROC curve. Conclusions Both scoring systems demonstrated good diagnostic performance, with similar rates of decision to biopsy. Overall, Likert was superior by all definitions of clinically significant prostate cancer. It has the advantages of being flexible, intuitive and allowing inclusion of clinical data. However, its use should only be considered once radiologists have developed sufficient experience in reporting prostate mpMRI.
Purpose. Retrospectively evaluate the density of cerebral venous sinuses in nonenhanced head CTs (NCTs) and correlate these with the presence or absence of a cerebral venous sinus thrombus (CVST). Materials and Methods. Institutional review board approval was obtained and informed consent waived prior to commencing this retrospective study. Over a two-year period, all CT venograms (CTVs) performed at our institution were retrieved and the preceding/subsequent NCTs evaluated. Hounsfield Units (HUs) of thrombus when present as well as that of normal superior sagittal and sigmoid sinuses were measured. HU of thrombus was compared to that of normal vessels with and without standardisation to the average HU of the internal carotid arteries. Results. 299 CTVs were retrieved, 26 with a thrombus. Both raw and standardised HU measurements were significantly higher in CVST (p < 0.0001) compared to normal vessels. Both raw and standardised HUs are good predictors of CVST. A HU of ≥67 and a standardised measurement of ≥1.5 are associated with high probability of CVST on NCT. Conclusion. Cerebral venous sinus HU measurements may help improve sensitivity and specificity of NCT for venous sinus thrombosis and avoid potentially unnecessary follow-up examinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.