Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.
Typically, computational screens for new materials sharply constrain the compositional search space, structural search space, or both, for the sake of tractability. To lift these constraints, we construct a machine learning model from a database of thousands of density functional theory (DFT) calculations. The resulting model can predict the thermodynamic stability of arbitrary compositions without any other input and with six orders of magnitude less computer time than DFT. We use this model to scan roughly 1.6 million candidate compositions for novel ternary compounds (A x B y C z), and predict 4500 new stable materials. Our method can be readily applied to other descriptors of interest to accelerate domain-specific materials discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.