Ambient Particulate Matters (PM 10 , PM 2.5 and PM 0.1 ) were investigated at Shinjung station in New Taipei City, Taiwan. Samples were collected simultaneously using a dichotomous sampler (Andersen Model SA-241) and a MOUDI (MSP Model 110) over a 24-h period from May 2011 to November 2011 at Shinjung station. Samples were analyzed for metallic trace elements using ion coupled plasma mass spectroscopy (ICP-MS) and ionic compounds by ion chromatography (IC). The average concentrations of PM 10 , PM 2.5 and PM 0.1 were found to be 39.45 ± 11.58, 21.82 ± 7.50 and 1.42 ± 0.56 μg/m 3 , respectively. Based on the chemical information, positive matrix factorization (PMF) was used to identify PM sources. A total of five source types were identified, including soil dust, vehicle emissions, sea salt, industrial emissions and secondary aerosols, and their contributions were estimated using PMF. The crustal enrichment factors (EF) were calculated using Al as a reference for the trace metal species to identify the sources. Conditional probability functions (CPF) were computed using wind profiles and factor contributions. The results of CPF analysis were used to identify local point sources. The results suggest a competitive relationship between anthropogenic and natural source processes over the monitoring station.
Emission from field burning of agricultural crop residue is a common environmental hazard observed in northern India. It has a significant potential health risk for the rural population due to respirable suspended particulate matter (RSPM). A study on eight stage size segregated mass distribution of RSPM was done for 2 wheat and 3 rice crop seasons. The study was undertaken at rural and agricultural sites of Patiala (India) where the RSPM levels remained close to the National Ambient Air quality standards (NAAQS). Fine particulate matter (PM 2.5 ) contributed almost 55% to 64% of the RSPM, showing that, in general, the smaller particles dominated during the whole study period with more contribution during the rice crop as compared to that of wheat crop residue burning. Fine particulate matter content in the total RSPM increased with decrease in temperature. Concentration levels of PM 10 and PM 2.5 were higher during the winter months as compared to that in the summer months. Background concentration levels of PM 10 , PM 2.5 and PM 10À2.5 were found to be around 97AE21, 57AE15 and 40AE6 mg m
À3, respectively. The levels increased up to 66, 78 and 71% during rice season and 51, 43 and 61% during wheat crop residue burning, respectively. Extensive statistical analysis of the data was done by using pair t-test. Overall results show that the concentration levels of different size particulate matter are greatly affected by agricultural crop residue burning but the total distribution of the particulate matter remains almost constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.