The findings call for mechanistic translational studies to understand these deleterious effects of dexmedetomidine, and warrant prospective clinical trials to assess the impact of perioperative dexmedetomidine use on outcomes in cancer patients.
The use of TLR agonists as an anti-cancer treatment is gaining momentum given their capacity to activate various host cellular responses through the secretion of inflammatory cytokines and type-I interferons. It is now also recognized that the perioperative period is a window of opportunity for various interventions aiming at reducing the risk of cancer metastases – the major cause of cancer related death. However, immune-stimulatory approach has not been used perioperatively given several contraindications to surgery. To overcome these obstacles, in the current study we employed the newly introduced, fully synthetic TLR-4 agonist, Glucopyranosyl Lipid-A (GLA-SE), in various models of cancer metastases, and in the context of acute stress or surgery. Without exerting evident adverse effects, a single systemic administration of GLA-SE rapidly and dose dependently elevated both innate and adaptive immunity in the circulation, lungs, and the lymphatic system. Importantly, GLA-SE treatment led to reduced metastatic development of a mammary adenocarcinoma and a colon carcinoma by approximately 40-75% in F344 rats and BALB/c mice, respectively, at least partly through elevating marginating-pulmonary NK cell cytotoxicity. GLA-SE is safe and well tolerated in humans, and currently is used as an adjuvant in phase-II clinical trials. Given that the TLR-4 receptor and its signaling cascade is highly conserved throughout evolution, our current results suggest that GLA-SE may be a promising immune stimulatory agent in the context of oncological surgeries, aiming to reduce long-term cancer recurrence.
Loss of cognitive function with aging is a complex and poorly understood process. Recently, clinical research has linked the occurrence of cortical microinfarcts to cognitive decline. Cortical microinfarcts form following the occlusion of penetrating vessels and are considered to be restricted to the proximity of the occluded vessel. Whether and how such local events propagate and affect remote brain regions remain unknown. To this end, we combined histological analysis and longitudinal diffusion tensor imaging (DTI), following the targeted-photothrombotic occlusion of single cortical penetrating vessels. Occlusions resulted in distant tissue reorganization across the mouse brain. This remodeling co-occurred with the formation of a microglia/macrophage migratory path along subcortical white matter tracts, reaching the contralateral hemisphere through the corpus callosum and leaving a microstructural signature detected by DTI-tractography. CX3CR1-deficient mice exhibited shorter trail lengths, differential remodeling, and only ipsilateral white matter tract changes. We concluded that microinfarcts lead to brain-wide remodeling in a microglial CX3CR1-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.