Home-made multiwall carbon nanotubes (MWCNTs) were used as a reinforcing conducting filler for a thermoplastic polymer, polycarbonate (PC) and the mechanical and electrical properties of the composites were investigated for electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding applications. A uniformly dispersed MWCNT/PC composite system was fabricated using solvent casting and a combination of solvent casting and compression molding techniques. The effect of MWCNTs on the failure mechanism of the polymer under tensile loading showed a ductile to brittle transition with increasing amount of carbon nanotubes. ESD studies showed that the composite films of 2 and 5 wt% functionalized-MWCNT/PC with respective charge decay times of 1 and 0.6 s show promise as electrostatic dissipative materials. EMI shielding effectiveness of a five-layered system ($2 mm thickness) of as-synthesized-MWCNT/PC composite films at 20 wt% loading reached 43 dB in the X-band (8.2-12.4 GHz). The primary mechanism of shielding was absorption, suggesting possible use as an EMI absorbing material. By using low pressure (contact pressure) compression molding the EMI shielding properties of bulk composites ($2 mm thickness) improved by about 14 dB at 10 wt% MWCNT loading.
Lightweight and easily foldable with high conductivity, multiwalled carbon nanotube (MWCNT)-based mesocarbon microbead (MCMB) composite paper is prepared using a simple, efficient, and cost-effective strategy. The developed lightweight and conductive composite paper have been reported for the first time as an efficient electromagnetic interference (EMI) shielding material in X-band frequency region having a low density of 0.26 g/cm(3). The investigation revealed that composite paper shows an excellent absorption dominated EMI shielding effectiveness (SE) of -31 to -56 dB at 0.15-0.6 mm thickness, respectively. Specific EMI-SE of as high as -215 dB cm(3)/g exceeds the best values of metal and other low-density carbon-based composites. Additionally, lightweight and easily foldable ability of this composite paper will help in providing stable EMI shielding values even after constant bending. Such intriguing performances open the framework to designing a lightweight and easily foldable composite paper as promising EMI shielding material, especially in next-generation devices and for defense industries.
A hybrid three phase system containing MCMBs/MWCNTs/Fe3O4 in the form of a highly flexible and light weight composite paper is fabricated by simple cost effective strategies and is promising EMI shielding applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.