Background – Population growth of lianas in the tropical forest is credited to their ability of CO2 sequestration and efficiency of the narrow stems to supply water required for the amount of foliage it bears. Turbina corymbosa (L.) Raf. (Convolvulaceae Juss.) is one of the fast-growing invasive species of scrambling woody lianas. It covers trees entirely within a short period to compete with above-ground resources (particularly sunlight). However, no information is available on how it manages to cope up with an increasing demand of water supply and mineral nutrients. What are the structural and developmental patterns adapted by this species to expand the stem diameter for efficient supply of below-ground resources? Therefore, our aim was to investigate the secondary growth patterns and structure of secondary xylem and phloem in T. corymbosa.Methods – Several samples of the stem with various diameters were studied using a histological method. Morphological and anatomical analyses were carried out using light microscopy.Key results – With the initiation of secondary growth, stems lose their circular outline rapidly due to unequal deposition of secondary xylem and formation of successive cambia. New successive cambia initiate from parenchymatous cells as small crescent-shaped fragments on asymmetric/opposite sides and result in a different stem conformation. Though several segments of successive cambia are formed, very few stem samples form complete cambium rings. The secondary xylem formed by successive cambia is diffuse porous with indistinct growth rings and is composed of both wide and narrow (fibriform) vessels, tracheids, fibres, axial and ray parenchyma cells. The secondary phloem consists of sieve tube elements, companion cells, axial and ray parenchyma cells. In fully grown plants, cambial action (internal cambium) occurrs between the intraxylary phloem and protoxylem and produces secondary xylem and phloem near the pith region.Conclusion – Structural alterations and unequal deposition of conducting elements, occurrence of intraxylary phloem and flattening of the stem are suggested to facilitate rapid growth of the plants by providing required minerals and nutrients. Internal cambium formed at the periphery of the pith is bidirectional and produces secondary xylem externally and intraxylary phloem internally. Continued development of intraxylary phloem from the internal cambium provides an additional path for rapid and safe translocation of photosynthates.
Anatomía del tallo y desarrollo del floema interxilar en Strychnos bredemeyeri (Loganiaceae)En Strychnos bredemeyeri, pequeñas porciones de cambium dejan temporalmente de producir xilema secundario y produce más floema centrífugamente. Un nuevo segmento del cambium se diferencia en la parte exterior de este floema formado, entonces estos se unen al cilindro regular para formar un anillo. Esta repetida actividad da como resultado la inclusión de islas de floema dentro del xilema secundario, llamado floema interxilar. Luego aparecen nuevos elementos del floema asociado al cambium y a las islas de floema que aplastan los elementos no conductores de islas de floema. Junto al floema interxilar, el floema intraxilar está formado por la adición desde las células marginales de la médula. Posteriormente, pequeños arcos del cambium interno se inician en el borde interno del protoxilema en tallos gruesos. Palabras clave:Variante en el cambium, Floema incluso, Floema interxilar, Liana, Floema intraxilar, Xilema secundario, Floema secundario. AbstractIn Strychnos bredemeyeri small segments of the cambium cease to produce secondary xylem temporarily and produce more phloem centrifugally. A new segment of the cambium differentiates outside to this phloem, which unite with the regular cylinder to form a complete ring by leaving the cambium segment in the furrow. Such repeated activity of cambium results in inclusion of phloem islands within the secondary xylem, called interxylary phloem. New phloem elements added by the cambium associated with phloem islands crush the non-conducting sieve elements in older phloem islands. Beside interxylary phloem, intraxylary phloem is added from the marginal pith cells. Subsequently, small arcs of the internal cambium initiate on the inner margin of the protoxylem in thick stems.
Members of the Convolvulaceae are characterized by the climbing habit and occurrence of variant secondary growth. From a histological perspective, the genus Ipomoea L. is the most extensively studied, while other genera have been less studied. Here, stem anatomy of the least studied genus in the family, Hewittia Wight & Arn., represented by Hewittia malabarica (L.) Suresh was investigated using classical histological techniques. In both the samples collected from India and South Africa, stem thickness increased by developing different types of cambial variants such as: neo-formed vascular cylinders, parenchyma proliferation at the phloem wedges, ray-derived cambia from dilating phloem rays, internal cambium, intra- and interxylary phloem. Neo-formed vascular cylinders develop from the parenchyma cells external to the phloem as a meristemoid in thick stems and later in dilating ray cells. With the increase in stem diameter, cells of the phloem wedges showed proliferation by meristematic activity, which form a connection with the cortex by rupturing the primary tissue ring of eustele. Subsequently, development of cambium in phloem wedges and deposition of its derivatives increased the tangential width of rays. Mature thick stems (25–30 mm) give rise to a fissured stem. Intraxylary (internal) phloem development on the pith margin was observed from primary growth onwards and in thick stems secondary intraxylary phloem developed from the internal cambium. Internal cambium is functionally bidirectional and produces secondary xylem internally and secondary phloem externally. In all the samples, patches of unlignified parenchyma embedded within the secondary xylem dedifferentiate and mature into interxylary phloem with the increasing age. Development of cambial variant and structure of the secondary xylem is correlated with the functional significance of the climbing habit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.