Neutrophil dysregulation is implicated in the pathogenesis of systemic lupus erythematosus (SLE). SLE is characterized by elevated levels of a pathogenic neutrophil subset known as low-density granulocytes (LDGs). The origin and phenotypic, functional, and pathogenic heterogeneity of LDGs remain to be systematically determined. Transcriptomics and epigenetic assessment of lupus LDGs, autologous normal-density neutrophils, and healthy control neutrophils was performed by bulk and single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. Functional readouts were compared among neutrophil subsets. SLE LDGs display significant transcriptional and epigenetic heterogeneity and comprise 2 subpopulations of intermediate-mature and immature neutrophils, with different degrees of chromatin accessibility and differences in transcription factor motif analysis. Differences in neutrophil extracellular trap (NET) formation, oxidized mitochondrial DNA release, chemotaxis, phagocytosis, degranulation, ability to harm the endothelium, and responses to type I interferon (IFN) stimulation are evident among LDG subsets. Compared with other immune cell subsets, LDGs display the highest expression of IFN-inducible genes. Distinct LDG subsets correlate with specific clinical features of lupus and with the presence and severity of coronary artery disease. Phenotypic, functional, and pathogenic neutrophil heterogeneity are prevalent in SLE and may promote immune dysregulation and prominent vascular damage characteristic of this disease.
Aims The neutrophil–lymphocyte ratio (NLR) is a readily available inflammatory biomarker that may associate with atherosclerosis and predict cardiovascular (CV) events. The aims of this study are to determine whether the NLR predicts incident major adverse cardiovascular events (MACE) and is modified by anti-inflammatory therapy. Methods and results Baseline and on-treatment NLRs were calculated from complete blood counts among 60 087 participants randomized in the CANTOS, JUPITER, SPIRE-1, SPIRE-2, and CIRT trials to receive placebo or canakinumab, rosuvastatin, bococizumab, or methotrexate, respectively, and followed up for MACE. All analyses were performed first in CANTOS, and then externally validated in the other four trials. For the five trials, hazard ratios for major CV events and mortality comparing NLR quartiles were computed using Cox proportional hazards models, and the effect of each randomized intervention on the NLR was evaluated in comparison to placebo. The NLR modestly correlated with interleukin-6, C-reactive protein, and fibrinogen levels but minimally with lipids. In all five randomized trials, baseline NLR predicted incident CV events and death; the per-quartile increase in risk of MACE was 20% in CANTOS [95% confidence interval (CI) 14–25%, P < 0.0001], 31% in SPIRE-1 (95% CI 14–49%, P = 0.00007), 27% in SPIRE-2 (95% CI 12–43%, P = 0.0002), 9% in CIRT (95% CI 0.2–20%, P = 0.045), and 11% in JUPITER (95% CI 1–22%, P = 0.03). While lipid-lowering agents had no significant impact on the NLR, anti-inflammatory therapy with canakinumab lowered the NLR (P < 0.0001). Conclusion The NLR, an easily obtained inflammatory biomarker, independently predicts CV risk and all-cause mortality, and is reduced by interleukin-1β blockade with canakinumab.
The use of biologic therapy has increased over the past decade well beyond primary autoimmune diseases. Indeed, a recent trial using an anti-IL-1beta antibody reduced second myocardial infarction (MI) in those who have had MI. Psoriasis is a chronic inflammatory disease often treated with biologics when severe, is associated with increased risk of MI, in part driven by high-risk coronary plaque phenotypes by coronary computed tomography angiography (CCTA). We hypothesized that we would observe a reduction in inflammatory-driven phenotypes of coronary plaque, including non-calcified coronary plaque burden and lipid-rich necrotic core in those treated with biologic therapy after one-year compared with non-biologic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.