In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4–5 μm in length, 1–2 μm in width and 20–30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.
We report on a pH sensor with ultrahigh sensitivity based on a microcantilever structure with a lithographically-defined crosslinked copolymeric hydrogel. Silicon-on-insulator wafers were used to fabricate cantilevers on which a polymer consisting of poly(methacrylic acid) (PMAA) with poly(ethylene glycol) dimethacrylate was patterned using free-radical UV polymerization. As the pH around the cantilever was increased above the pKa of PMAA, the polymer network expanded and resulted in a reversible change in surface stress causing the microcantilever to bend. Excellent mechanical amplification of polymer swelling as a function of pH change within the dynamic range was obtained, with a maximum deflection sensitivity of 1 nm/5×10−5 ΔpH.
Microfluidic-based manipulation of particles is of great interest due to the insight it provides into the physics of hydrodynamic forces. Here, we study a particle-size-dependent phenomenon based on differential inertial focusing that utilizes the flow characteristics of curved, low aspect ratio (channel width ≫ height), microfluidic channels. We report the emergence of two focusing points along the height of the channel (z-plane), where different sized particles are focused and ordered in evenly spaced trains at correspondingly different lateral positions within the channel cross-section. We applied the system for continuous ordering and separation of suspension particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.