The C1ORF112 gene initially drew attention when it was found to be strongly co‐expressed with several genes previously associated with cancer and implicated in DNA repair and cell cycle regulation, such as RAD51 and the BRCA genes. The molecular functions of C1ORF112 remain poorly understood, yet several studies have uncovered clues as to its potential functions. Here, we review the current knowledge on C1ORF112 biology, its evolutionary history, possible functions, and its potential relevance to cancer. C1ORF112 is conserved throughout eukaryotes, from plants to humans, and is very highly conserved in primates. Protein models suggest that C1ORF112 is an alpha-helical protein. Interestingly, homozygous knockout mice are not viable, suggesting an essential role for C1ORF112 in mammalian development. Gene expression data show that, among human tissues, C1ORF112 is highly expressed in the testes and overexpressed in various cancers when compared to healthy tissues. C1ORF112 has also been shown to have altered levels of expression in some tumours with mutant TP53. Recent screens associate C1ORF112 with DNA replication and reveal possible links to DNA damage repair pathways, including the Fanconi anaemia pathway and homologous recombination. These insights provide important avenues for future research in our efforts to understand the functions and potential disease relevance of C1ORF112.
Susceptibility of gastrointestinal dysmotility increases with age-associated colonic degeneration. A paucity of remedies reversing colonic degeneration per se hinders the fundamental relief of symptoms. Here we discovered the correlation between colon degeneration and altered nicotinamide adenine dinucleotide (NAD) level in aged mice. Compared to 3-month-old young controls, 2-year-old mice showed a spectrum of degenerative colonic phenotypes and exhibited a significant elongated transit time and slowed stool frequency in the context of Lomotil-induced slow-transit constipation. Despite upregulated colonic tryptophan hydroxylases expression, serotonin release and expression of colon-predominant type IV serotonin receptor, reduced viability of interstitial cells of Cajal while enhanced aquaporins (Aqp1, 3 and 11) led to a less colonic motility and increased luminal dehydration in aged mice. Notably, this colonic degeneration was accompanied with reduced key NAD+-generating enzyme expression and lowered NAD+/NADH ratio in aged colon. Three-month continuous administration of beta nicotinamide mononucleotide, a NAD+ precursor, elevated colonic NAD+ level and improved defecation in aged mice. In contrast, pharmacological inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme for NAD+ biosynthesis, induced a reduction in colonic NAD content and impaired gastrointestinal function in young mice. Taken together, these findings suggest the beneficial effect of NAD+ in maintaining colonic homoeostasis and reactivating NAD+ biosynthesis may represent a promising strategy to counteract age-related gastrointestinal degeneration.
Plants in nature may face a wide range of favorable or unfavorable biotic and abiotic factors during their life cycle. Any of these factors may cause stress in plants; therefore, they have to be more adaptable to stressful environments and must acquire greater response to different stresses. The objective of this study is to retrieve and arrange data from the literature in a standardized electronic format for the development of information resources on potential stress responsive genes in Arabidopsis thaliana. This provides a powerful mean for manipulation, comparison, search, and retrieval of records describing the nature of various stress responsive genes in Arabidopsis thaliana. The database is based exclusively on published stress tolerance genes associated with plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.