Staphylococcus aureus is opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 100 Staphylococcus aureus isolates were obtained from clinical samples derived from hospitalized patients. The presumptive Staphylococcus aureus clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species specific 16S rRNA primer pairs and finally 100 isolates were found to be positive as Staphylococcus aureus. Screened isolates were further analyzed by several microbiological diagnostics tests including gelatin hydrolysis, protease, and lipase tests. It was found that 78%, 81%, and 51% isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance pattern ranging from 57 to 96%. Our study also shows 70% strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high level multidrug resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.
Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data.
Panton-Valentine leukocidin (luk-pv) is a cytotoxin that causes leukocyte destruction and tissue necrosis. The aim of this study was to determine the prevalence of the pv1, mecA, and nuc genes in Staphylococcus aureus isolates obtained from anterior nares and superficial infection sites of skin in a slum population of West Bengal, India. Expression level of pv1 gene was also analysed. Twenty-two S. aureus strains were isolated, and phenotype and genotype specific examinations for S. aureus isolates were carried out. Molecular identification was done by PCR using species-specific 16S rRNA primer pairs and finally 22 isolates were found to be positive as S. aureus. The antibiotic responsiveness of all these isolates and the minimum inhibitory concentration (MIC) of MRSA isolates were determined using the broth dilution method with vancomycin. Antibiogram analysis of isolated S. aureus strains with respect to different antimicrobial agents revealed antibiotic resistance ranging from 27 to 91%. The results of MIC for vancomycin showed 95% of strains to be VSSA and 5% to be VISA. 68% isolates were resistant to methicillin. All the isolates were subjected to detection of pv1, mecA, and nuc genes, and 9%, 68%, and 27% were found to harbour pvl, mecA, and nuc genes, respectively. All the MRSA strains produced high to moderate levels of biofilm. pvl gene expression was carried out in vitro by Real-Time PCR. The low ∆Ct value (0.493) was indicative of high expression of pvl in one S. aureus strain. Thus, detection of pvl gene in community acquired S. aureus indicates the emergence of pathogenic S. aureus in community setup in the studied region. The existing exploration is extremely imperative and informative for the high level multi-drug resistant S. aureus infections inclusive of MRSA.
Vibrio cholerae, the Gram-negative bacterium causing lethal diarrheal disease cholera, forms biofilm on solid surfaces to gain adaptive advantage for successful survival in aquatic reservoirs. Expression of exopolysaccharide (EPS), an extracellular matrix material, has been found critical for biofilm-based environmental persistence. In a subset of epidemic-causing V. cholerae, absence of flagellum but not motility was identified to induce elevated exopolysaccharide expression. Identification of the role played by quorum sensing autoinducer molecules, i.e., cholera autoinducer 1 (CAI-1) and autoinducer 2 (AI-2) as well as central regulator LuxO on EPS expression in the subset was explored. Deletion mutations were introduced in vital genes responsible for synthesizing CAI-1 (cqsA), AI-2 (luxS), flagellum (flaA), LuxO (luxO), flagellar motor (motX), and VpsR (vpsR) in the model strain MO10. Subsequent phenotypic alterations in terms of colony morphology, EPS expression, biofilm formation, and transcription level of relevant genes were analyzed. Autoinducer cross-feeding experiment confirmed the role of autoinducers in EPS signaling. Results reveal that autoinducers and flagellum are the two major EPS signaling units in this subset where one unit becomes predominant for EPS production in absence of the other. Moreover, either unit exerts negative influence on EPS induction by the other. Both the EPS signaling cascades are independent of LuxO contribution and essentially involve sodium-driven flagellar motor and VpsR. A cell density and flagellum-mediated, but LuxO-independent, EPS signaling mechanism is considered to be functional in these organisms that confers their survival fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.