Proper scoring rules serve to measure subjective degrees of belief. Traditional proper scoring rules are based on the assumption of expected value maximization. There are, however, many deviations from expected value, primarily due to risk aversion. Correcting techniques have been proposed in the literature for deviations due to nonlinear utility. These techniques still assumed expected utility maximization. More recently, corrections for deviations from expected utility have been proposed. The latter concerned, however, only the quadratic scoring rule, and could handle only half of the domain of subjective beliefs. Further, beliefs close to 0.5 could not be discriminated. This paper generalizes the correcting techniques to all bounded binary proper scoring rules, covers the whole domain of beliefs and, in particular, can discriminate between all degrees of belief. Thus, we fully extend the properness requirement (in the sense of identifying all degrees of subjective beliefs) to virtually all models that deviate from expected value.
Case-based decision theory (CBDT) provided a new way of revealing preferences, with decisions under uncertainty determined by similarities with cases in memory. This paper introduces a method to measure CBDT that requires no commitment to parametric families and that relates directly to decisions. Thus, CBDT becomes directly observable and can be used in prescriptive applications. Two experiments on real estate investments demonstrate the feasibility of our method. Our implementation of real incentives not only avoids the income effect, but also avoids interactions between different memories. We confirm CBDT's predictions except for one violation of separability of cases in memory. (JEL D12, D81, R30)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.