In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.