Optimization is a buzzword, whenever researchers think of engineering problems. This paper presents a new metaheuristic named dingo optimizer (DOX) which is motivated by the behavior of dingo (Canis familiaris dingo). The overall concept is to develop this method involving the collaborative and social behavior of dingoes. The developed algorithm is based on the hunting behavior of dingoes that includes exploration, encircling, and exploitation. All the above prey hunting steps are modeled mathematically and are implemented in the simulator to test the performance of the proposed algorithm. Comparative analyses are drawn among the proposed approach and grey wolf optimizer (GWO) and particle swarm optimizer (PSO). Some of the well-known test functions are used for the comparative study of this work. The results reveal that the dingo optimizer performed significantly better than other nature-inspired algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.