To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications. The proposed architecture experimented on three different publicly available H&E stained histopathological datasets namely: (I) Kidney (RCC) (II) Triple Negative Breast Cancer (TNBC) (III) MoNuSeg-2018. We have considered F1-score, Aggregated Jaccard Index (AJI), the total number of parameters, and FLOPs (Floating point operations), which are mostly preferred performance measure metrics for comparison of nuclei segmentation. The evaluated score of nuclei segmentation indicated that the proposed architecture achieved a considerable margin over five state-of-the-art deep learning models on three different histopathology datasets. Visual segmentation results show that the proposed DSREDN model accurately segment the nuclear regions than those of the state-of-the-art methods.
Trends of kidney cancer cases worldwide are expected to increase persistently and this inspires the modification of the traditional diagnosis system to respond to future challenges. Renal Cell Carcinoma (RCC) is the most common kidney cancer and responsible for 80–85% of all renal tumors. This study proposed a robust and computationally efficient fully automated Renal Cell Carcinoma Grading Network (RCCGNet) from kidney histopathology images. The proposed RCCGNet contains a shared channel residual (SCR) block which allows the network to learn feature maps associated with different versions of the input with two parallel paths. The SCR block shares the information between two different layers and operates the shared data separately by providing beneficial supplements to each other. As a part of this study, we also introduced a new dataset for the grading of RCC with five different grades. We obtained 722 Hematoxylin & Eosin (H &E) stained slides of different patients and associated grades from the Department of Pathology, Kasturba Medical College (KMC), Mangalore, India. We performed comparable experiments which include deep learning models trained from scratch as well as transfer learning techniques using pre-trained weights of the ImageNet. To show the proposed model is generalized and independent of the dataset, we experimented with one additional well-established data called BreakHis dataset for eight class-classification. The experimental result shows that proposed RCCGNet is superior in comparison with the eight most recent classification methods on the proposed dataset as well as BreakHis dataset in terms of prediction accuracy and computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.