Abstract:The India-France SARAL/AltiKa mission is the first Ka-band altimetric mission dedicated primarily to oceanography. The mission objectives were firstly the observation of the oceanic mesoscales but also global and regional sea level monitoring, including the coastal zone, data assimilation, and operational oceanography. SARAL/AltiKa proved also to be a great opportunity for inland waters applications, for observing ice sheet or icebergs, as well as for geodetic investigations. The mission ended its nominal phase after three years in orbit and began a new phase (drifting orbit) in July 2016. The objective of this paper is to highlight some of the most remarkable achievements of the SARAL/AltiKa mission in terms of scientific applications. Compared to the standard Ku-band altimetry measurements, the Ka-band provides substantial improvements in terms of spatial resolution and data accuracy. We show here that this leads to remarkable advances in terms of observation of the mesoscale and coastal ocean, waves, river water levels, ice sheets, icebergs, fine scale bathymetry features as well as for the many related applications.
The monkeypox disease (MPX) outbreak of 2022 has been reported in more than one hundred countries and is becoming a global concern. Unfortunately, only a few treatments, such as tecovirimat (TCV), are available against MPX. Brincidofovir (BCV) is a United States Food and Drug Administration (USFDA)-approved antiviral against smallpox. This article reviews the potential of BCV for treating MPX and other Orthopoxvirus (OPXVs) diseases. The literature for this review was collected from PubMed, authentic websites (USFDA, Chimerix), and freely available patent databases (USPTO, Espacenet, and Patentscope). BCV (a lipophilic derivative of cidofovir) has been discovered and developed by Chimerix Incorporation, USA. Besides smallpox, BCV has also been tested clinically for various viral infections (adenovirus, cytomegalovirus, ebola virus, herpes simplex virus, and double-stranded DNA virus). Many health agencies and reports have recommended using BCV for MPX. However, no health agency has yet approved BCV for MPX. Accordingly, the off-label use of BCV is anticipated for MPX and various viral diseases. The patent literature revealed some important antiviral compositions of BCV. The authors believe there is a huge opportunity to create novel, inventive, and patentable BCV-based antiviral therapies (new combinations with existing antivirals) for OPXVs illnesses (MPX, smallpox, cowpox, camelpox, and vaccinia). It is also advised to conduct drug interaction (food, drug, and disease interaction) and drug resistance investigations on BCV while developing its combinations with other medications. The BCV-based drug repurposing options are also open for further exploration. BCV offers a promising opportunity for biosecurity against OPXV-based bioterrorism attacks and to control the MPX outbreak of 2022.
In this study, river stage variation derived from satellite altimetry was used to assess the water level, monthly discharge, and annual water yield at six virtual gauging stations at the braided reaches of the Brahmaputra River. The braided reaches of the river dynamically change their planform, thalweg line, and aggradation or degradation period. Stage records derived from the Envisat satellite of the European Space Agency and Topex/Poseidon of NASA/CNES were used for the period 2002-2010. Spatial interpolation and datum correction were applied on altimetry-derived river stage records before analysis. A correlation and error analysis between the in situ and satellite-altimetry-derived stages was carried out for these stations for both monsoon and non-monsoon seasons. Yearly optical satellite images were used for qualitative assessment of temporal variations in aggradation/degradation phases at the gauging stations. Using the pseudo-rating curve, discharges at two virtual gauging stations were estimated. The results show that the altimetry-estimated discharges are of good agreement with observed discharge for the monsoon months (June-September) as compared with the non-monsoon months (October-May). In order to assess the annual water yield variability, yearly variation in annual water yield from the altimetry data was also estimated and compared to that observed. The estimated annual water yields were 90% accurate. Similarly, the long-term averaged monthly discharge series estimated from satellite altimetry closely follows the temporal trend of that of the observed series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.