Perovskite typeBa0.98Ca0.02Zr0.02Ti0.98O3 (BCZT), Ba0.98Ca0.02Zr0.02Ti0.976Cu0.008O3 (BCZTC) and Ba0.9725Bi0.005Ca0.02Zr0.02Ti0.976Cu0.008O3(BCZTCB) lead-free ceramics were synthesised via solid-state reaction method at a sintering temperature of ~1380 °C. Effects of CuO and Bi2O3/CuO doping on structural, microstructural, dielectric, and ferroelectric properties were investigated systematically. X-ray diffraction technique confirmed the existence of pure perovskite phase with the tetragonal structure in pure and in the doped BCZT ceramics at room temperature. The dielectric analysis demonstrated two anomalies around 24 °C and 126 °C for BCZT, which were identified as orthorhombic to tetragonal (TO-T) and tetragonal to cubic (TC) phase transition temperature, respectively. The TO-T temperature shifted to below 16 °C, while the TC increased to 132 °C for the BCZTCB sample. The physical mechanisms of the conduction processes were investigated through impedance spectroscopy and the values of resistance, conductivity, and activation energies associated with the grain and grain boundaries were evaluated. The activation energy was determined to be higher for doped samples than for pure BCZT. Further, the dopant-dependent ferroelectric nature of the ceramic samples was evidenced by the analysis of characteristic hysteresis loop, and a value of remnant polarisation (Pr = 4.59 C/cm 2 ) was obtained for the BCZTCB ceramic sample. Furthermore, the d33 value, which was 54 pC/N for pure BCZT, was determined to be 140 pC/N and 64 pC/N for BCZTC and BCZTCB, respectively.
The third-order nonlinear optical properties of undoped and nitrogen-doped ZnO thin films were evaluated using the z-scan technique. The films were sputter-deposited on glass substrates using radio frequency power. The He-Ne continuous wave laser operating at 633 nm was used as an irradiation source. A change in the growth mode in the nitrogen-doped films was observed. The grain size and roughness were found to be dependent on the nitrogen concentration, as shown by atomic force microscopy analysis. The optical band gap was determined and found to increase with nitrogen concentration in the films. Both nonlinear absorption and refraction nonlinearities were exhibited by the deposited films. The nonlinear refractive index n 2 , the nonlinear absorption coefficient β eff and the third-order nonlinear optical susceptibility χ (3) were determined and found to be largest. Multiple diffraction ring patterns were observed when the samples were made to interact with the laser beam and were attributed to refractive index change and thermal lensing. Further, optical power-limiting experiments were performed to determine the optical-limiting threshold and clamping values for undoped and nitrogen-doped ZnO films.
In this article various nanorefrigerants have been critically reviewed towards the performance enhancement of the refrigeration system. Research has been more focused on the different techniques to prepare nanorefrigerants. This paper is an attempt to summarize all aspects of nanorefrigerants such as preparation, thermophysical properties, hydrodynamic study, boiling heat transfer, and performance of nanorefrigerants. It also discusses the effects of different nanoparticles on thermophysical properties. Nanorefrigerants are a special category of nanofluid, advanced nanotechnology-based refrigerants that are stable mixtures of nanoparticles and base fluid, which improve thermophysical properties such as heat transfer and pressure drop and bring compactness to the system. This article presents an overview of improving thermal performance by using different nanoparticle blends with different base refrigerants. Further, influential parameters of nanoparticles and thermal performance are discussed. This paper also discusses the effects of different nanoparticles such as Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, CuO, carbon nanotubes (CNTs), etc., on thermophysical properties. The present situation requires a robust system and refrigerants for required performance. Some refrigerants cannot be used directly. So, this paper deals with using nanorefrigerants for better system performance such as coefficient of performance (COP) enhancement, compressor work reduction, and energy efficiency. It is seen that the use of nanorefrigerants, or nanotechnology-based refrigerants, results in highly effective cooling and thus enhances the thermophysical properties of refrigeration systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.