Wireless capsule endoscopy (WCE) is an effective video technology to diagnose gastrointestinal (GI) disease, such as bleeding. In order to avoid conventional tedious and risky manual review process of long duration WCE videos, automatic bleeding detection schemes are getting importance. In this paper, to investigate bleeding, the analysis of WCE images is carried out in normalized RGB color space as human perception of bleeding is associated with different shades of red. In the proposed method, at first, from the WCE image frame, an efficient region of interest (ROI) is extracted based on interplane intensity variation profile in normalized RGB space. Next, from the extracted ROI, the variation in the normalized green plane is presented with the help of histogram. Features are extracted from the proposed normalized green plane histograms. For classification purpose, the K-nearest neighbors classifier is employed. Moreover, bleeding zones in a bleeding image are extracted utilizing some morphological operations. For performance evaluation, 2300 WCE images obtained from 30 publicly available WCE videos are used in a tenfold cross-validation scheme and the proposed method outperforms the reported four existing methods having an accuracy of 97.86%, a sensitivity of 95.20%, and a specificity of 98.32%.
Background: Computer-aided disease detection schemes from wireless capsule endoscopy (WCE) videos have received great attention by the researchers for reducing physicians' burden due to the time-consuming and risky manual review process. While single disease classification schemes are greatly dealt by the researchers in the past, developing a unified scheme which is capable of detecting multiple gastrointestinal (GI) diseases is very challenging due to the highly irregular behavior of diseased images in terms of color patterns. Method: In this paper, a computer-aided method is developed to detect multiple GI diseases from WCE videos utilizing linear discriminant analysis (LDA) based region of interest (ROI) separation scheme followed by a probabilistic model fitting approach. Commonly in training phase, as pixel-labeled images are available in small number, only the image-level annotations are used for detecting diseases in WCE images, whereas pixel-level knowledge, although a major source for learning the disease characteristics, is left unused. In view of learning the characteristic disease patterns from pixel-labeled images, a set of LDA models are trained which are later used to extract the salient ROI from WCE images both in training and testing stages. The intensity patterns of ROI are then modeled by a suitable probability distribution and the fitted parameters of the distribution are utilized as features in a supervised cascaded classification scheme. Results: For the purpose of validation of the proposed multi-disease detection scheme, a set of pixel-labeled images of bleeding, ulcer and tumor are used to extract the LDA models and then, a large WCE dataset is used for training and testing. A high level of accuracy is achieved even with a small number of pixel-labeled images. Conclusion: Therefore, the proposed scheme is expected to help physicians in reviewing a large number of WCE images to diagnose different GI diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.