Recent evidence established a crucial role for mammalian oxygen sensing transcription factor hypoxia inducible factor-1 (HIF-1) in innate immunity against intracellular pathogens. In response to most of these pathogens host phagocytes increase transcription of HIF-1α, the regulatory component of HIF-1 to express various effector molecules against invaders. Leishmania donovani (LD), a protozoan parasite and the causative agent of fatal visceral leishmaniasis resides in macrophages within mammalian host. The mechanism of HIF-1 activation or its role in determining the fate of LD in infected macrophages is still not known. To determine that J774 macrophages were infected with LD and about four-fold increase in HIF-1 activity and HIF-1α expression were detected. A strong increase in HIF-1α expression and nuclear localization was also detected in LD-infected J774 cells, peritoneal macrophages and spleen derived macrophages of LD-infected BALB/c mice. A two-fold increase in HIF-1α mRNA was detected in LD-infected macrophages suggesting involvement of a transcriptional mechanism that was confirmed by promoter activity. We further revealed that LD also induced HIF-1α expression by depleting host cellular iron pool to affect prolyl hydroxylase activity resulting in to stabilization of HIF-1α. To determine the role of HIF-1 on intracellular LD, cells were transfected with HIF-1α siRNA to attenuate its expression and then infected with LD. Although, initial infection rate of LD in HIF-1α attenuated cells was not affected but intracellular growth of LD was significantly inhibited; while, over-expression of stabilized form of HIF-1α promoted intracellular growth of LD in host macrophage. Our results strongly suggest that LD activates HIF-1 by dual mechanism for its survival advantage within macrophage.
B cells are known to control CD4 T cell differentiation in secondary lymphoid tissues. We hypothesized that IL-10 expression by marginal zone precursor (MZP) regulatory B cells controls the differentiation and positioning of effector and regulatory T cells during tolerization. Costimulatory blockade with donor-specific transfusion (DST) and anti-CD40L mAb in C57BL/6 mice induced tolerance to allogeneic cardiac allograft. B cell depletion or IL-10 deficiency in B cells prevented tolerance, resulting in decreased follicular regulatory CD4+ T cells (Tfr) and increased IL-21 expression by T follicular helper (Tfh) cells in the B cell and T cell zones. IL-21 acted with IL-6 to induce CCR6+ Th17 that caused rejection. Deficiency or blockade of IL-6, IL-21, IL-21R, or CCR6 prevented B cell depletion-induced acute cellular rejection; while agonistic mCCL20-Ig induced rejection. Adoptive transfer of IL-10+/+ MZP in tolerogen treated CD19-Cre+/−::IL-10fl/fl mice rescued the localization of Tfh and Tfr cells in the B cell follicle and prevented allograft rejection. MZP B cell IL-10 is necessary for tolerance and controls the differentiation and position of Th17, Tfh and Tfr cells in secondary lymphoid tissues. This has implications for understanding tolerance induction and how B cell depletion may prevent tolerance.
Background Blocking CD40-CD40L costimulatory signals induces transplantation tolerance. While B cell depletion prevents alloantibody formation, non-humoral functions of B cells in tolerance have not been well characterized. We investigated whether specific subsets of B cell or B cell derived IL-10 contribute to tolerance. Methods Wild type C57BL/6, or B cell specific IL-10−/− (CD19-Cre+/−::IL-10fl/fl) mice, received vascularized BALB/c cardiac allografts. BALB/c donor-specific splenocyte transfusion (DST) and anti-CD40L mAb were used as tolerogen. B cells were depleted with anti-mouse CD20 mAb. Various B cell subsets were purified and characterized by flow cytometry, RT-PCR, and adoptive transfer. Results B cell depletion prevented co-stimulatory blockade induced allogeneic tolerance. Costimulatory blockade increased IL-10 in marginal zone precursor (MZP) B cells, but not other subsets. In particular, costimulatory blockade did not change other previously defined regulatory B cell subsets (Breg), including CD5+CD1dhi Breg or expression of TIM1 or TIM4 on these Breg or other Breg cell subsets. Costimulatory blockade also induced IL-21R expression in MZP B cells, and IL-21R+ MZP B cells expressed even more IL-10. B cell depletion or IL-10 deficiency in B cells prevented tolerance in a cardiac allograft model, resulting in rapid acute cardiac allograft rejection. Adoptive transfer of wild type MZP B cells but not other subsets to B cell specific IL-10 deficient mice prevented graft rejection. Conclusion CD40 costimulatory blockade induces MZP B cell IL-10 which is necessary for tolerance. These observations have implications for understanding tolerance induction and how B cell depletion may prevent tolerance.
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Hepcidin mediated ferroportin (Fpn) degradation in macrophages is a well adopted strategy to limit iron availability towards invading pathogens. Leishmania donovani (LD), a protozoan parasite, resides within macrophage and competes with host for availing iron. Using in vitro and in vivo model of infection, we reveal that LD decreases Fpn abundance in host macrophages by hepcidin independent mechanism. Unaffected level of Fpn-FLAG in LD infected J774 macrophage confirms that Fpn down-regulation is not due its degradation. While increased Fpn mRNA but decreased protein expression in macrophages suggests blocking of Fpn translation by LD infection that is confirmed by S-methionine labelling assay. We further reveal that LD blocks Fpn translation by induced binding of iron regulatory proteins (IRPs) to the iron responsive element present in its 5'UTR. Supershift analysis provides evidence of involvement of IRP2 particularly during in vivo infection. Accordingly, a significant increase in IRP2 protein expression with simultaneous decrease in its stability regulator F-box and leucine-rich repeat Protein 5 (FBXL5) is detected in splenocytes of LD-infected mice. Increased intracellular growth due to compromised expressions of Fpn and FBXL5 by specific siRNAs reveals that LD uses a novel strategy of manipulating IRP2-FBXL5 axis to inhibit host Fpn expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.