Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β 2 -microglobulin (β 2 m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL −1 . In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.extensional flow | aggregation | unfolding | bioprocessing | antibody P roteins are dynamic and metastable and consequently have conformations that are highly sensitive to the environment (1). Over the last 50 y the effect of changes in temperature, pH, and the concentration of kosmatropic/chaotropic agents on the conformational energy landscape of proteins has become well understood (1). This, in turn, has allowed a link to be established between the partial or full unfolding of proteins and their propensity to aggregate (2). The force applied onto a protein as a consequence of hydrodynamic flow has also been observed to trigger protein aggregation and has fundamental (3), medical (4), and industrial relevance, especially in the manufacture of biopharmaceuticals (5-8). Although a wealth of studies have been performed (7,(9)(10)(11)(12)(13), no consensus has emerged on the ability of hydrodynamic flow to induce protein aggregation (7,14,15). This is due to the wide variety of proteins used (ranging from lysozyme, BSA, and alcohol dehydrogenase to IgGs), differences in the type of flow field generated (e.g., shear, extensional, or mixtures of these), and to the presence or absence of an interface (16). A shearing flow field (Fig. 1A, Top) is caused by a gradient in velocity perpendicular to the direction of travel and is characterized by the shear rate (s −1 ). This results in a weak rotating motion of a protein alongside translation in the direction of the flow. An extensional flow field (Fig. 1A, Bottom) is generated by a gradient in velocity in the direction of travel and is characterized by the strain rate (s −1 ). A protein in this type of flow would experien...