We show that the flow of granular material inside a two-dimensional flat bottomed hopper is altered significantly by having more than one exit orifice. For hoppers with small orifice widths, intermittent flow through one orifice enables the resumption of flow through the adjacent jammed orifice, thus displaying a sequence of jamming and unjamming events. Using discrete element simulations, we show that the total amount of granular material (i.e., avalanche size) emanating from all the orifices combined can be enhanced by about an order of magnitude difference by simply adjusting the interorifice distance. The unjamming is driven primarily by fluctuations alone when the interorifice distance is large, but when the orifices are brought close enough, the fluctuations along with the mean flow cause the flow to unjam.
We investigate the mixing characteristics of dry granular material while draining down a silo with multiple exit orifices. The mixing in the silo, which otherwise consists of noninteracting stagnant and flowing regions, is observed to improve significantly when the flow through specific orifices is stopped intermittently. This momentary stoppage of flow through the orifice is either controlled manually or is chosen by the system itself when the orifice width is small enough to cause spontaneous jamming and unjamming. We observe that the overall mixing behavior shows a systematic dependence on the frequency of closing and opening of specific orifices. In particular, the silo configuration employing random jamming and unjamming of any of the orifices shows early evidence of chaotic mixing. When operated in a multipass mode, the system exhibits a practical and efficient way of mixing particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.