Immune checkpoint inhibitors1 result in impressive clinical responses2–5 but optimal results will require combination with each other6 and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires RT, anti-CTLA4, and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T regulatory cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio. RT enhances the diversity of the T cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while RT shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligo-clonal T cell expansion. Similar to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumors to escape anti-CTLA4-based therapy, and the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response and immunity through distinct mechanisms.
SUMMARY Therapeutic blocking of the PD1 pathway results in significant tumor responses but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB), and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways, and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.
In this article, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with CT guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection. Purpose: Recent studies suggest that ultrahigh-dose-rate, "FLASH," electron radiation therapy (RT) decreases normal tissue damage while maintaining tumor response compared with conventional dose rate RT. Here, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with computed tomography guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection. Methods and Materials: Absolute dose was measured at multiple depths in solid water and validated against an absolute integral charge measurement using a Faraday cup. Real-time dose rate was obtained using a NaI detector to measure prompt gamma rays. The effect of FLASH versus standard dose rate PRT on tumors and normal tissues was measured using pancreatic flank tumors (MH641905) derived from the KPC autochthonous PanCa model in syngeneic C57BL/6J mice with analysis of fibrosis and stem cell repopulation in small intestine after abdominal irradiation.
Oncogenic transformation and hypoxia both induce glut1 mRNA. We studied the interaction between the ras oncogene and hypoxia in up-regulating glut1 mRNA levels using Rat1 fibroblasts transformed with H-ras (Rat1-ras). Transformation with H-ras led to a substantial increase in glut1 mRNA levels under normoxic conditions and additively increased glut1 mRNA levels in concert with hypoxia. Using a luciferase reporter construct containing 6 kilobase pairs of the glut1 promoter, we showed that this effect was mediated at the transcriptional level. Promoter activity was much higher in Rat1-ras cells than in Rat1 cells and could be down-regulated by cotransfection with a dominant negative Ras construct (RasN17). A 480-base pair (bp) cobalt/hypoxia-responsive fragment of the promoter containing a HIF-1 binding site showed significantly higher activity in Rat1-ras cells than in Rat1 cells, suggesting that Ras might mediate its effect through HIF-1 even under normoxic conditions. Consistent with this, Rat1-ras cells displayed higher levels of HIF1-␣ protein under normoxic conditions. In addition, a promoter construct containing a 4-bp mutation in the HIF1 binding site showed lower activity in Rat1-ras cells than a construct with an intact HIF1 binding site. The activity of the latter construct but not the former could be down-regulated by RasN17, supporting the importance of the HIF1 binding site in regulation by Ras. The phosphatidylinositol 3-kinase inhibitor LY29004 down-regulated glut1 promoter activity and mRNA levels under normoxia and also decreased HIF1␣ protein levels in these cells. Collectively these results indicate that H-Ras up-regulates the glut1 promoter, at least in part, by increasing HIF-1␣ protein levels leading to transactivation of promoter through the HIF-1 binding site.Oncogenic transformation of mammalian cells is associated with many alterations in metabolism (see Ref. 1 for review). An increased rate of glucose transport is among the most characteristic biochemical markers of the transformed phenotype. The Glut1 glucose transporter is one of the proteins responsible (reviewed in Ref. 2). A number of oncogenes, including fps, src, and ras have been shown to increase glucose transport and to up-regulate glut1 mRNA and protein levels (3-5). glut1 gene expression and glucose transport are also stimulated in a variety of cells under hypoxic conditions, a response that is mediated by the transcription factor HIF-1.1 HIF-1 binds to a cis-acting binding sites located within the 5Ј-flanking region of the glut1 gene (8, 9).Because hypoxia and oncogenic mutations are both commonly present in tumors, we set out to examine the interaction between the two in up-regulating glut1 mRNA levels. Mutations in Ras are seen in a third of human cancers (6); therefore, as our model system we used Rat1 fibroblasts transformed with H-ras. Transformation with H-ras led to a substantial increase in glut1 mRNA levels under normoxic conditions and additively increased glut1 mRNA levels in concert with hypoxia. Our results ind...
The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cel-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.