This paper presents the free and constrained inflation of a pre-stretched hyperelastic cylindrical membrane and a subsequent constrained deflation. The membrane material is assumed as a homogeneous and isotropic Mooney-Rivlin solid. The constraining soft cylindrical substrate is assumed to be a distributed linear stiffness normal to the undeformed surface. Both frictionless and adhesive contact are modelled during the inflation as an interaction between the dry surfaces of the membrane and the substrate. An adhesive contact is modelled during deflation. The free and constrained inflation yields governing equations and boundary conditions, which are solved by a finite difference method in combination with a fictitious time integration method. Continuity in the principal stretches and stresses at the contact boundary is dependent on the contact conditions and inflation-deflation phase. The pre-stretch has a counterintuitive softening effect on free and constrained inflation. The variation of limit point pressures with pre-stretch and the occurrence of a cusp point is shown. Interesting trends are observed in the stretch and stress distributions after the interaction of the membrane with soft substrate, which underlines the effect of material parameters, pre-stretch and constraining properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.