Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor–β1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation–induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.
Hybrid lipid oligonucleotide conjugates are finding more and more biotechnological applications. This short critical review highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology (111 references).
Impact injuries of cartilage may initiate post-traumatic degeneration, making early detection of injury imperative for timely surgical or pharmaceutical interventions. Cationic (positively-charged) CT contrast agents detect loss of cartilage proteoglycans (PGs) more sensitively than anionic (negatively-charged) or non-ionic (non-charged, i.e., electrically neutral) agents. However, degeneration related loss of PGs and increase in water content have opposite effects on the diffusion of the cationic agent, lowering its sensitivity. In contrast to cationic agents, diffusion of non-ionic agents is governed only by steric hindrance and water content of cartilage. We hypothesize that sensitivity of an iodine(I)-based cationic agent may be enhanced by simultaneous use of a non-ionic gadolinium(Gd)-based agent. We introduce a quantitative dual energy CT technique (QDECT) for simultaneous quantification of two contrast agents in cartilage. We employ this technique to improve the sensitivity of cationic CA4+ (q =+4) by normalizing its partition in cartilage with that of non-ionic gadoteridol. The technique was evaluated with measurements of contrast agent mixtures of known composition and human osteochondral samples (n = 57) after immersion (72 h) in mixture of CA4+ and gadoteridol. Samples were arthroscopically graded and biomechanically tested prior to QDECT (50/100 kV). QDECT determined contrast agent mixture compositions correlated with the true compositions (R= 0.99, average error = 2.27%). Normalizing CA4+ partition in cartilage with that of gadoteridol improved correlation with equilibrium modulus (from ρ = 0.701 to 0.795). To conclude, QDECT enables simultaneous quantification of I and Gd contrast agents improving diagnosis of cartilage integrity and biomechanical status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.