Compound exocytosis is considered the most massive mode of exocytosis, during which the membranes of secretory granules (SGs) fuse with each other to form a channel through which the entire contents of their granules is released. The underlying mechanisms of compound exocytosis remain largely unresolved. Here we show that the small GTPase Rab5, a known regulator of endocytosis, is pivotal for compound exocytosis in mast cells. Silencing of Rab5 shifts receptor-triggered secretion from a compound to a full exocytosis mode, in which SGs individually fuse with the plasma membrane. Moreover, we show that Rab5 is essential for FcεRI-triggered association of the SNARE protein SNAP23 with the SGs. Direct evidence is provided for SNAP23 involvement in homotypic SG fusion that occurs in the activated cells. Finally, we show that this fusion event is prevented by inhibition of the IKKβ2 kinase, however, neither a phosphorylation-deficient nor a phosphomimetic mutant of SNAP23 can mediate homotypic SG fusion in triggered cells. Taken together our findings identify Rab5 as a heretofore-unrecognized regulator of compound exocytosis that is essential for SNAP23-mediated granule-granule fusion. Our results also implicate phosphorylation cycles in controlling SNAP23 SNARE function in homotypic SG fusion.
Regulated exocytosis is a process by which cargo, which is stored in secretory granules (SGs), is released in response to a secretory trigger. Regulated exocytosis is fundamental for intercellular communication and is a key mechanism for the secretion of neurotransmitters, hormones, inflammatory mediators, and other compounds, by a variety of cells. At least three distinct mechanisms are known for regulated exocytosis: full exocytosis, where a single SG fully fuses with the plasma membrane, kiss-and-run exocytosis, where a single SG transiently fuses with the plasma membrane, and compound exocytosis, where several SGs fuse with each other, prior to or after SG fusion with the plasma membrane. The type of regulated exocytosis undertaken by a cell is often dictated by the type of secretory trigger. However, in many cells, a single secretory trigger can activate multiple modes of regulated exocytosis simultaneously. Despite their abundance and importance across cell types and species, the mechanisms that determine the different modes of secretion are largely unresolved. One of the main challenges in investigating the different modes of regulated exocytosis, is the difficulty in distinguishing between them as well as exploring them separately. Here we describe the use of fluorescein isothiocyanate (FITC)-dextran as an exocytosis reporter, and live cell imaging, to differentiate between the different pathways of regulated exocytosis, focusing on compound exocytosis, based on the robustness and duration of the exocytic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.