UBQLN2 is one of a family of proteins implicated in ubiquitin-dependent protein quality control and integrally tied to human neurodegenerative disease. Whereas wild-type UBQLN2 accumulates in intraneuronal deposits in several common age-related neurodegenerative diseases, mutations in the gene encoding this protein result in X-linked amyotrophic lateral sclerosis/frontotemporal dementia associated with TDP43 accumulation. Using in vitro protein analysis, longitudinal fluorescence imaging and cellular, neuronal, and transgenic mouse models, we establish that UBQLN2 is intrinsically prone to self-assemble into higher-order complexes, including liquid-like droplets and amyloid aggregates. UBQLN2 self-assembly and solubility are reciprocally modulated by the protein’s ubiquitin-like and ubiquitin-associated domains. Moreover, a pathogenic UBQLN2 missense mutation impairs droplet dynamics and favors amyloid-like aggregation associated with neurotoxicity. These data emphasize the critical link between UBQLN2’s role in ubiquitin-dependent pathways and its propensity to self-assemble and aggregate in neurodegenerative diseases.
In Alzheimer’s disease (AD), metal-associated amyloid-β (metal–Aβ) species have been suggested to be involved in neurotoxicity; however, their role in disease development is still unclear. To elucidate this aspect, chemical reagents have been developed as valuable tools for targeting metal–Aβ species, modulating the interaction between the metal and Aβ, and subsequently altering metal–Aβ reactivity. Herein, we report the design, preparation, characterization, and reactivity of two diphenylpropynone derivatives (DPP1 and DPP2) composed of structural moieties for metal chelation and Aβ interaction (bifunctionality). The interactions of these compounds with metal ions and Aβ species were confirmed by UV-Vis, mass spectrometry, and docking studies. The effects of these bifunctional molecules on the control of in vitro metal-free and metal-induced Aβ aggregation were investigated and monitored by gel electrophoresis and transmission electron microscopy (TEM). Both DPP1 and DPP2 showed reactivity toward metal–Aβ species over metal-free Aβ species to different extents. In particular, DPP2, which contains a dimethylamino group, exhibited greater reactivity with metal–Aβ species than DPP1, suggesting a structure-reactivity relationship. Overall, our studies present a new bifunctional scaffold that could be utilized to develop chemical reagents for investigating metal–Aβ species in AD.
Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity.
The deposition of aggregates of human islet amyloid peptide (hIAPP) has been correlated with the death of insulin-producing beta (β) cells in type II diabetes mellitus. The actual molecular mechanism of cell death remains unknown; however, it has been postulated that the process of aggregation and amyloid fibril growth from monomeric hIAPP is closely involved. Intermediate IAPP aggregates are highly toxic to islet cells, but lack of structural knowledge of these oligomers and complications in applying biophysical techniques to their study have been the main obstacles in designing structure-based therapeutics. Furthermore, the involvement of metal ions (Cu(2+) and Zn(2+)) associated with hIAPP has demonstrated an effect on the aggregation pathway. In the absence of well-defined targets, research attempting to attenuate amyloid-linked toxicity has been substantially slowed. Therefore, obtaining high-resolution structural insights on these intermediates through NMR techniques can provide information on preventing IAPP aggregation. In this Perspective, a review of avenues to obtain fundamental new insights into the aggregation pathway of IAPP and other amyloidogenic proteins through NMR and other techniques is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.