except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
in Wiley InterScience (www.interscience.wiley.com).The problem of feedback control of spatially distributed processes described by highly dissipative partial differential equations (PDEs) is considered. Typically, this problem is addressed through model reduction, where finite dimensional approximations to the original infinite dimensional PDE system are derived and used for controller design. The key step in this approach is the computation of basis functions that are subsequently utilized to obtain finite dimensional ordinary differential equation (ODE) models using the method of weighted residuals. A common approach to this task is the Karhunen-Loe`ve expansion combined with the method of snapshots. To circumvent the issue of a priori availability of a sufficiently large ensemble of PDE solution data, the focus is on the recursive computation of eigenfunctions as additional data from the process becomes available. Initially, an ensemble of eigenfunctions is constructed based on a relatively small number of snapshots, and the covariance matrix is computed. The dominant eigenspace of this matrix is then utilized to compute the empirical eigenfunctions required for model reduction. This dominant eigenspace is recomputed with the addition of each snapshot with possible increase or decrease in its dimensionality; due to its small dimensionality the computational burden is relatively small. The proposed approach is applied to representative examples of dissipative PDEs, with both linear and nonlinear spatial differential operators, to demonstrate its effectiveness of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.