Skin is the primary protective layer of the internal organs of the body. Nowadays, due to increasing pollution and multiple other factors, various types of skin diseases are growing globally. With variable shapes and multiple types, the classification of skin lesions is a challenging task. Motivated by this spreading deformity in society, a lightweight and efficient model is proposed for the highly accurate classification of skin lesions. Dynamic-sized kernels are used in layers to obtain the best results, resulting in very few trainable parameters. Further, both ReLU and leakyReLU activation functions are purposefully used in the proposed model. The model accurately classified all of the classes of the HAM10000 dataset. The model achieved an overall accuracy of 97.85%, which is much better than multiple state-of-the-art heavy models. Further, our work is compared with some popular state-of-the-art and recent existing models.
Potato is one of the major cultivated crops and provides occupations and livelihoods for numerous people across the globe. It also contributes to the economic growth of developing and underdeveloped countries. However, potato blight is one of the major destroyers of potato crops worldwide. With the introduction of neural networks to agriculture, many researchers have contributed to the early detection of potato blight using various machine and deep learning algorithms. However, accuracy and computation time remain serious issues. Therefore, considering these challenges, we customised a convolutional neural network (CNN) to improve accuracy with fewer trainable parameters, less computation time, and reduced information loss. We compared the performance of the proposed model with various machine and deep learning algorithms used for potato blight classification. The proposed model outperformed the others with an overall accuracy of 99% using 839,203 trainable parameters in 183 s of training time.
The world is having a vast collection of text with abandon of knowledge. However, it is a difficult and time-taking process to manually read and recognize the text written in numerous regional scripts. The task becomes more critical with Gurmukhi script due to complex structure of characters motivated from the challenges in designing an error-free and accurate classification model of Gurmukhi characters. In this paper, the author has customized the convolutional neural network model to classify handwritten Gurmukhi words. Furthermore, dataset has been prepared with 24000 handwritten Gurmukhi word images with 12 classes representing the month’s names. The dataset has been collected from 500 users of heterogeneous profession and age group. The dataset has been simulated using the proposed CNN model as well as various pretrained models named as ResNet 50, VGG19, and VGG16 at 100 epochs and 40 batch sizes. The proposed CNN model has obtained the best accuracy value of 0.9973, whereas the ResNet50 model has obtained the accuracy of 0.4015, VGG19 has obtained the accuracy of 0.7758, and the VGG16 model has obtained value accuracy of 0.8056. With the current accuracy rate, noncomplex architectural pattern, and prowess gained through learning using different writing styles, the proposed CNN model will be of great benefit to the researchers working in this area to use it in other ImageNet-based classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.